3 resultados para Wind power prediction
em University of Queensland eSpace - Australia
Resumo:
We consider the problems of computing the power and exponential moments EXs and EetX of square Gaussian random matrices X=A+BWC for positive integer s and real t, where W is a standard normal random vector and A, B, C are appropriately dimensioned constant matrices. We solve the problems by a matrix product scalarization technique and interpret the solutions in system-theoretic terms. The results of the paper are applicable to Bayesian prediction in multivariate autoregressive time series and mean-reverting diffusion processes.
Resumo:
We present AUSLEM (AUStralian Land Erodibility Model), a land erodibility modelling system that utilizes a rule-set of surficial and climatic thresholds applied through a Geographic Information System (GIs) modelling framework to predict landscape susceptibility to wind erosion. AUSLEM is distinctive in that it quantitatively assesses landscape susceptibility to wind erosion at a 5 x 5 km. spatial resolution on a monthly time-step across Australia. The system was implemented for representative wet (1984), dry (1994), and average rainfall (1997) years with corresponding low, high and moderate dust storm day frequencies. Results demonstrate that AUSLEM can identify landscape erodibility, and provide an interpretation of the physical nature and distribution of erodible landscapes in Australia. Further, results offer an assessment of the dynamic tendencies of erodibility in space and time in response to the El Nino Southern Oscillation (ENSO) and seasonal synoptic scale climate variability. A comparative analysis of AUSLEM output with independent national and international wind erosion, atmospheric aerosol and dust event records indicates a high level of model competency. (c) 2006 Elsevier B.V. All rights reserved.