5 resultados para Water-rock interaction

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alteration zones at the gold-rich Bajo de la Alumbrera porphyry copper deposit in northwestern Argentina are centered on several porphyritic intrusions. They are zoned from a central copper-iron sulfide and gold-mineralized potassic (biotite-K-feldspar +/- quartz) core outward to propylitic (chlorite-illite-epidote-calcite) assemblages. A mineralized intermediate argillic alteration assemblage (chlorite-illite +/- pyrite) has overprinted the potassic alteration zone across the top and sides of the deposit and is itself zoned outward into phyllic (quartzinuscovite-illite +/- pyrite) alteration. This study contributes new data to previously reported delta(18)O and delta D compositions of fluids responsible for the alteration at Bajo de la Alumbrera, and the data are used to infer likely ore-forming processes. Measured and calculated delta(18)O and delta D values of fluids (+8.3 to +10.2 and -33 to -81 parts per thousand, respectively) confirm a primary magmatic origin for the earliest potassic alteration phase. Lower temperature potassic alteration formed from magmatic fluids with lower delta D values (down to -123 parts per thousand). These depleted compositions are distinct from meteoric water and consistent with degassing and volatile exsolution of magmatic fluids derived from an underlying magma. Variability in the calculated composition of fluid associated with potassic alteration is explained in terms of phase separation (or boiling). if copper-iron sulfide deposition occurred during cooling (as proposed elsewhere), this cooling was largely a result of phase separation. Magmatic water was directly involved in the formation of overprinting intermediate argillic alteration assemblages at Bajo de la Alumbrera. Calculated delta(18)O and delta D values of fluids associated with this alteration range from +4.8 to +8.1 and -31 to -71 per mil, respectively Compositions determined for fluids associated with phyllic alteration (-0.8 to +10.2 and -31 to -119 parts per thousand) overlap with the values determined for the intermediate argillic alteration. We infer that phyllic alteration assemblages developed during two stages; the first was a high-temperature (400 degrees-300 degrees C) stage with D-depleted water (delta D = -66 to -119 parts per thousand). This compositional range may have resulted from magma degassing and/or the injection of new magmatic water into a compositionally evolved hydrothermal system. The isotopic variations also can be explained by increased fluid-rock interaction. The second stage of phyllic alteration occurred at a lower temperature (similar to 200 degrees C), and variations in the modeled isotopic compositions imply mixing of magmatic and meteoric waters. Ore deposition that occurred late in the evolution of the hydrothermal system was probably associated with further cooling of the magmatic fluid, in part caused by fluid-rock interaction and phase separation. Changing pH and/or oxygen fuoracity may have caused additional ore deposition. The ingress of meteoric water appears to postdate the bulk of mineralization and occurred as the system at Bajo de la Alumbrera waned.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mudrocks and carbonates of the Isa superbasin in the Lawn Hill platform in northern Australia host major base metal sulfide mineralization, including the giant strata-bound Century Zn-Pb deposit. Mineral paragenesis, stable isotope, and K-Ar dating studies demonstrate that long-lived structures such as the Termite Range fault acted as hot fluid conduits several times during the Paleoproterozoic and Mesoproterozoic in response to major tectonic events. Illite and chlorite crystallinity studies suggest the southern part of the platform has experienced higher temperatures (up to 300 degrees C) than similar stratigraphic horizons in the north. The irregular downhole variation of illite crystallinity values provides further information oil the thermal regime in the basin and shows that clay formation was controlled not only by temperature increase with depth but also by high water/rock ratios along relatively permeable zones. K-Ar dating of illite, in combination with other data, may indicate three major thermal events in the central and northern Lawn Hill platform Lit 1500, 1440 to 1400, and 1250 to 1150 Ma. This study did not detect the earlier Century base metal mineralizing event at 1575 Ma. 1500 Ma ages are recorded only in the south and correspond to the age of the Late Isan orogeny and deposition of the Lower Roper superbasin. They may reflect exhumation of a provenance region. The 1440 to 1300 Ma ages are related to fault reactivation and a thermal pulse at similar to 1440 to 1400 Ma possibly accompanied by fluid flow, with subsequent enhanced cooling possibly due to thermal relaxation or further crustal exhumation. The youngest thermal and/or fluid-flow event at 1250 to 1150 Ma is recorded mainly to the cast of the Tern-lite Range fault and may be related to the assembly of the Rodinian supercontinent. Fluids in equilibrium with illite that formed over a range of temperatures, at different times in different parts of the platform. have relatively uniform oxygen isotope compositions and more variable hydrogen isotope compositions (delta O-18 = 3.5-9.7 parts per thousand V-SMOW; delta D = -94 to -36 parts per thousand V-SMOW). The extent of the 180 enrichment and the variably depleted hydrogen isotope compositions suggest the illite interacted with deep-basin hypersaline brines that were composed of evaporated seawater and/or highly evolved meteoric water. Siderite is the most abundant iron-rich gangue phase in the Century Zn-Pb deposit, which is surrounded by all extensive ferroan carbonate alteration halo. Modeling suggests that the ore siderite formed at temperatures of 120 degrees to 150 degrees C, whereas siderite and ankerite in the alteration halo formed at temperatures of 150 degrees to 180 degrees C. The calculated isotopic compositions of the fluids are consistent with O-18-rich basinal brines and mixed inorganic and organic carbon Sources (6180 = 3-10 parts per thousand V-SMOW, delta C-13 = -7 to -3 parts per thousand V-PDB). in the northeast Lawn Hill platform carbonate-rich rocks preserve marine to early diagenetic carbon and oxygen isotope compositions, whereas ferroan carbonate cements in siltstones and shales in the Desert Creek borehole are O-18 and C-13 depleted relative to the sedimentary carbonates. The good agreement between temperature estimates from illite crystallinity and organic reflectance (160 degrees-270 degrees C) and inverse correlation with carbonate delta O-18 values indicates that organic maturation and carbonate precipitation in the northeast Lawn Hill platform resulted from interaction with the 1250 to 1150 Ma fluids. The calculated isotopic compositions of the fluid are consistent with evolved basinal brine (delta O-18 = 5.1-9.4 parts per thousand V-SMOW; delta C-13 = -13.2 to -3.7 parts per thousand V-PDB) that contained a variable organic carbon component from the oxidation and/or hydrolysis of organic matter in the host sequence. The occurrence of extensive O-18- and C-13-depleted ankerite and siderite alteration in Desert Creek is related to the high temperature of the 1250 to 1150 Ma fluid-flow event in the northeast Lawn Hill platform, in contrast to the lower temperature fluids associated with the earlier Century Zn-Pb deposit in the central Lawn Hill platform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

REE analyses were performed on authigenic illitic clay. minerals from Late Permian mudrocks, sandstones and bentonites from the Bowen Basin (Australia). The mixed-layer illite-smectite exhibit REE patterns with an obvious fractionation of the HREE from the LREE and MREE, which is an apparent function of degree of illitization reaction. The highly illitic (R greater than or equal to 3) illite-smectite from the northern Bowen Basin show a depletion of LREE relative to the less illitic (R=0 and 1) clays. In contrast, an enrichment of HREE for the illite-rich clays relative to less. illitic clays is evident for the southern Bowen Basin samples. The North American Shale Composite-normalized (La/Lu)(sn) ratios show negative correlations with the illite content in illite-smectite and positive correlations with the delta(18)O values of the clays for both the northern and southern Bowen Basin samples. These correlations indicate that the increasing depletion of LREE in hydrothermal fluids is a function of increasing water/rock ratios in the northern Bowen Basin. Good negative correlations between (La/Lu)(sn) ratios and illite content in illite-smectite from the southern Bowen Basin suggest the involvement of fluids with higher alkalinity and higher pH in low water/ rock ratio conditions. Increasing HREE enrichment with delta(18)O decrease indicates the effect of increasing temperature at low water/rock ratios in the southern Bowen Basin. Results of the present study confirm the conclusions of some earlier studies suggesting that REE in illitic clay minerals are mobile and fractionated during illitization and that this fact should be considered in studies of sedimentary processes and in identifying provenance. Moreover, our results show that REE systematic of illitic clay minerals can be applied as an useful technique to gain information about physico-chemical conditions during thermal and fluid flow events in certain sedimentary basins. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ornate tropical rock lobster, Panulirus ornatus has substantial potential as an aquaculture species though disease outbreaks during the animal's extended larval lifecycle are major constraints for success. In order to effectively address such disease-related issues, an improved understanding of the composition and dynamics of the microbial communities in the larval rearing tanks is required. This study used flow cytometry and molecular microbial techniques (clone libraries and denaturing gradient gel electrophoresis (DGGE)) to quantify and characterise the microbial community of the water column in the early stages (developmental stage I-II) of a P. ornatus larval rearing system. DGGE analysis of a 5000 L larval rearing trial demonstrated a dynamic microbial community with distinct changes in the community structure after initial stocking (day I to day 2) and from day 4 to day 5, after which the structure was relatively stable. Flow cytometry analysis of water samples taken over the duration of the trial demonstrated a major increase in bacterial load leading up to and peaking on the first day of the initial larval moult (day 7), before markedly decreasing prior to when > 50% of larvae moulted (day 9). A clone library of a day 10 water sample taken following a mass larval mortality event reflected high microbial diversity confirmed by statistical analysis indices. Sequences retrieved from both clone library and DGGE analyses were dominated by gamma- and alpha-Proteobacteria affiliated organisms with additional sequences affiliated with beta- and epsilon-Proteobacteria, Bacteroidetes, Cytophagales and Chlamydiales groups. Vibrio affiliated species were commonly retrieved in the clone library, though absent from DGGE analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coupling of sandy beach aquifers with the swash zone in the vicinity of the water table exit point is investigated through simultaneous measurements of the instantaneous shoreline (swash front) location, pore pressures and the water table exit point. The field observations reveal new insights into swash-aquifer coupling not previously gleaned from measurements of pore pressure only. In particular, for the case where the exit point is seaward of the observation point, the pore pressure response is correlated with the distance between the exit point and the shoreline in that when the distance is large the rate of pressure drop is fast and when the distance is small the rate decreases. The observations expose limitations in a simple model describing exit point dynamics which is based only on the force balance on a particle of water at the sand surface and neglects subsurface pressures. A new modified form of the model is shown to significantly improve the model-data comparison through a parameterization of the effects of capillarity into the aquifer storage coefficient. The model enables sufficiently accurate predictions of the exit point to determine when the swash uprush propagates over a saturated or a partially saturated sand surface, potentially an important factor in the morphological evolution of the beach face. Observations of the shoreward propagation of the swash-induced pore pressure waves ahead of the runup limit shows that the magnitude of the pressure fluctuation decays exponentially and that there is a linear increase in time lags, behavior similar to that of tidally induced water table waves. The location of the exit point and the intermittency of wave runup events is also shown to be significant in terms of the shore-normal energy distribution. Seaward of the mean exit point location, peak energies are small because of the saturated sand surface within the seepage face acting as a "rigid lid'' and limiting pressure fluctuations. Landward of the mean exit point the peak energies grow before decreasing landward of the maximum shoreline position.