155 resultados para Water potentials
em University of Queensland eSpace - Australia
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
Utilization of salt affected wasteland by growing forage shrubs has enormous economic and environmental implication for developing countries like Pakistan, where approximately 6.3 million ha of the land is salt affected. Considering the importance of Atriplex and Maireana species, research has been conducted using their different species on the salt affected soils of Faisalabad. Most of Atriplex and Maireana species survived under the environmental conditions of Faisalabad and gave the good yield in the form of forage. Some of these species are woody and can be used for fuel purposes. Sixteen genotypes of Atriplex and Maireana were tested for their tolerance to waterlogging in order to identify halophytic fodder shrubs suitable for growth on secondary salt-affected and waterlogged farmland. The physiological and morphological responses of the species tested were typical of species with a generally poor tolerance to waterlogging. Despite this, some species (eg A. Amnicola) were surprisingly resistant, surviving up to five months of waterlogging at moderate salinity and high evapotranspirational demand. The most resistant species, A amnicola maintained higher transpiration rates, leaf water potentials and shoot extension rates than most other species during five weeks of waterlogging, and a return to control levels more quickly than other species after plots were drained. Although little morphological adaptation to waterlogged conditions was detected, a shallow and extensive lateral root system and the formation of many short aerenchymatous adventitious roots from procumbent branches appeared to advantage A. Amnicola in an environment highly heterogeneous in salinity and low in oxygen concentration. Shallow fibrous rooted species were quickly killed by waterlogging, although the procumbent branches of some individuals survived as clones if they developed adventitious roots.
Resumo:
Rigid-shelled eggs of the broad-shelled river turtle Chelodina expansa were incubated at 28 degreesC in wet (-100 kPa), intermediate (-350 kPa) and dry (-750 kPa) conditions. Incubation period was influenced by clutch of origin, but was independent of incubation water potential. Rates of water gained from the environment and pre-pipping egg mass were influenced by incubation water potential - eggs incubating at higher (less negative) water potentials absorbing more water from their environment. Hatchlings from wet conditions had greater mass but a smaller amount of residual yolk than hatchlings from dry conditions and it is suggested that the amount of yolk converted to tissue is influenced by the amount of water absorbed by the egg during incubation. Water content of yolk-free hatchlings from the -100-kPa treatment was greater than those from the 350-kPa and -750-kPa treatments, but the water content of residual yolks was similar across all hydric conditions.
Resumo:
The influences of temperature, time, and moisture on the germination of macroconidia and secondary conidia of Australian isolates of Claviceps africana were studied in vitro. The optimum temperature for germination of both macroconidia and secondary conidia of C. africana was 20degreesC. Although germination of macroconidia ceased near 31degreesC, approximately 30% of secondary conidia germinated at 37degreesC after 48 and 72 h of incubation. Sorghum flower extract agar stimulated macroconidium and secondary conidium germination, irrespective of temperature. Germination of macroconidia and secondary conidia on water agar started after 4 h of incubation at 20degreesC, reaching a maximum after 16-24 h and 14 h, respectively. Maximum germination of both macroconidia and secondary conidia was at greater than or equal to-5 bars at 20degreesC. Germination of secondary conidia ceased at -35 bars, whereas macroconidia germinated at water potentials as low as -55 bars at 20degreesC.
Resumo:
Utilization of salt affected wasteland by growing forage shrubs has enormous economic and environmental implication for developing countries like Pakistan, where approximately 6.3 million ha of the land is salt affected. Considering the importance of Atriplex and Maireana species, research has been conducted using their different species on the salt affected soils of Faisalabad. Most of Atriplex and Maireana species survived under the environmental conditions of Faisalabad and gave the good yield in the form of forage. Some of these species are woody and can be used for fuel purposes. Sixteen genotypes of Atriplex and Maireana were tested for their tolerance to waterlogging in order to identify halophytic fodder shrubs suitable for growth on secondary salt-affected and waterlogged farmland. The physiological and morphological responses of the species tested were typical of species with a generally poor tolerance to waterlogging. Despite this, some species (e.g., A. amnicola) were surprisingly resistant, surviving up to five months of waterlogging at moderate salinity and high evapotranspirational demand. The most resistant species, A amnicola maintained higher transpiration rates, leaf water potentials and shoot extension rates than most other species during five weeks of waterlogging, and a return to control levels more quickly than other species after plots were drained. Although little morphological adaptation to waterlogged conditions was detected, a shallow and extensive lateral root system and the formation of many short aerenchymatous adventitious roots from procumbent branches appeared to advantage A. amnicola in an environment highly heterogeneous in salinity and low in oxygen concentration. Waterlogging quickly killed shallow fibrous rooted species, although the procumbent branches of some individuals survived as clones if they developed adventitious roots.
Resumo:
Experiments were conducted to investigate physiological mechanisms of solid matrix priming (SMP) on germination enhancement of loblolly pine (Pinus taeda) seeds. During SMP, osmotic potential in the embryo decreased by 0.65 MPa, concentration of crystalloid proteins decreased to 62% and concentrations of buffer soluble proteins and free amino acids increased by 22% and by 166%, respectively. Observations under an electron microscope demonstrated protein bodies in the embryo were mobilized. Inhibitor analysis indicated thiol protease was the dominant enzyme among endopiptidases to degrade the reserved proteins. A fragment of thiol protease was cloned from the primed seed embryos and it has high identities to those thiol proteases responsive to water stress. RNA get blot analysis showed a 1.5 kb thiol protease gene was up-regulated by SMP. Treatment with E64, a thiol protease inhibitor, negated SMP effects on germination performance, water potentials and protein profiles. Based on the experimental results, reserve protein mobilization induced by SMP in the embryo before radicle emergence might be one of the mechanisms to enhance germination in loblolly pine seeds.
Resumo:
This study examined the effect of soil type on burrowing behaviour and cocoon formation during aestivation in the green-striped burrowing frog, Cyclorana alboguttata (Gunther, 1867). Given a choice, frogs always chose to burrow in wet sand in preference to wet clay. Frogs buried themselves faster and dug deeper burrows in sandy soil. However, under my laboratory conditions, there was little difference in the pattern of soil drying between the two soil types. Frogs in both sand and clay soil experienced hydrating conditions for the first 3amonths and dehydrating conditions for the last 3amonths of the 6-month aestivation period, and cocoons were not formed until after 3amonths of aestivation. After 6amonths, there were more layers in the cocoons of frogs aestivating in sand than those aestivating in clay. Frogs were able to absorb water from sandy soil with water potentials greater than -400akPa, but lost water when placed on sand with a water potential of -1000akPa.
Resumo:
Evidence is presented for the existence of a countercurrent flow between water and blood at the respiratory surfaces of the Port Jackson shark gill.
Resumo:
Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.