9 resultados para Water basin
em University of Queensland eSpace - Australia
Resumo:
Two geographically distinct silcrete associations are present in southern Australia, inland and eastern; these were sampled in central South Australia and central Victoria, respectively, At each site, both silicified and immediately adjacent unsilicified parent material were collected. Analytical data from these pairs were used to construct isocons, assuming Zr immobility, and to calculate the volume change and amount of silica introduced during silicification, These results, together with whole-rock oxygen isotope compositions, were used to determine the delta(18)O of th, introduced silica, The results show that the eastern silcretes in central Victoria are probably linked genetically to the associated basalts, weathering of which supplied the introduced silica, This conclusion is based on the close spatial connection between the two, as well as the substantial amount of introduced silica in the silcretes (greater than in the inland silcretes), resulting in volume increases in some eastern silcretes, Oxygen isotopic calculations for the silcretes indicate that the silica precipitated from groundwaters at temperatures slightly higher than present conditions. Silcrete formation apparently occurred during the Miocene and Pliocene (basalts in Victoria younger than Pliocene lack associated silcrete) and may reflect the much wetter climate in southeastern Australia at that time. The inland silcretes of central South Australia can be divided into pedogenic (the most common) and groundwater varieties. The pedogenic silcretes, which show typical soil features like columnar and nodular textures, contain moderate amounts of introduced silica that precipitated by evaporation from saline groundwaters, For the groundwater silcretes, which have massive textures and formed at or close to the water table, insufficient data are available to determine the mode of formation. The inland pedogenic silcretes have probably been farming from the Eocene-Miocene to the present, implying that conditions of seasonally high evaporation have occurred in central Australia during this time period. Thus silcrete formation depends on a complex interplay between climate and silica supply, and it is impossible to generalize that the presence of silcrete is indicative of a particular climate. Likewise, the elemental composition of silcretes, particularly Ti content, is not necessarily of climatic significance, Nevertheless, detailed geochemical and oxygen isotopic studies of a silcrete and its parent material can elucidate the mechanisms of silcrete formation, and if evaporation is indicated as a major factor in silcrete formation, then the climate at the time was likely to have been at least seasonally arid.
Resumo:
Abstract: The Murray-Darling Basin comprises over 1 million km2; it lies within four states and one territory; and over 12, 800 GL of irrigation water is used to produce over 40% of the nation's gross value of agricultural production. This production is used by a diverse collection of some-times mutually exclusive commodities (e.g. pasture; stone fruit; grapes; cotton and field crops). The supply of water for irrigation is subject to climatic and policy uncertainty. Variable inflows mean that water property rights do not provide a guaranteed supply. With increasing public scrutiny and environmental issues facing irrigators, greater pressure is being placed on this finite resource. The uncertainty of the water supply, water quality (salinity), combined with where water is utilised, while attempting to maximising return for investment makes for an interesting research field. The utilisation and comparison of a GAMS and Excel based modelling approach has been used to ask: where should we allocate water?; amongst what commodities?; and how does this affect both the quantity of water and the quality of water along the Murray-Darling river system?
Resumo:
Authigenic carbonate minerals are ubiquitous throughout the Late Permian coal measures of the Bowen Basin, Queensland, Australia. In the northern Bowen Basin, carbonates include the following assemblages: siderite I (delta O-18(SMOW) = +11.4 to + 17%, delta C-13(PDB) = - 5.3 to + 120), Fe-Mg calcite-ankerite-siderite II mineral association (delta O-18(SMOW) = +7.2 to + 10.20, delta C-13(PDB) = 10.9 to - 1.80 for ankerite) and a later calcite (delta O-18(SMOW) = +5.9 to + 14.60, delta C-13(PDB) = -11.4 to + 4.40). In the southern Bowen Basin, the carbonate phase consists only of calcite (delta O-18(SMOW) = +12.5 to + 14.80, delta C-13(PDB) = -19.4 to + 0.80), where it occurs extensively throughout all stratigraphic levels. Siderite I occurs in mudrocks and sandstones and predates all other carbonate minerals. This carbonate phase is interpreted to have formed as an early diagenetic mineral from meteoric waters under cold climate and reducing conditions. Fe-Mg calcite-ankerite-siderite Il occur in sandstones as replacement of volcanic rock fragments. Clay minerals (illite-smectite, chlorite and kaolinite) postdate Ca-Fe-Mg carbonates, and precipitation of the later calcite is associated with clay mineral formation. The Ca-Fe-Mg carbonates and later calcite of the northern Bowen Basin are regarded as having formed as a result of hydrothermal activity during the latest Triassic extensional tectonic event which affected this part of the basin, rather than deep burial diagenesis during the Middle to Late Triassic as previously reported. This hypothesis is based on the timing relationships of the authigenic mineral phases and the low delta O-18 values of ankerite and calcite, together with radiometric dating of illitic clays and recently published regional geological evidence. Following the precipitation of the Ca-Fe-Mg carbonates from strongly O-18-depleted meteoric-hydrothermal fluids, continuing fluid circulation and water-rock interaction resulted in dissolution of these carbonate phases as well as labile fragments of volcaniclastic rocks. Subsequently, the later calcite and day minerals precipitated from relatively evolved (O-18-enriched) fluids. The nearly uniform delta O-18 values of the southern Bowen Basin calcite have been attributed to very low water/rock ratio in the system, where the fluid isotropic composition was buffered by the delta O-18 values of rocks. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The upper 1200 m of pre-Pliocene sediment recovered by Cape Roberts Project (CRP) drilling off the Victoria Land coast of Antarctica between 1997-1999 has been subdivided into 54 unconformity-bound stratigraphic sequences, spanning the period c. 32 to 17 Ma. The sequences are recognised on the basis of the cyclical vertical stacking of their constituent lithofacies, which are enclosed by erosion surfaces produced during the grounding of the advancing ice margin onto the sea floor. Each sequence represents deposition in a range of offshore shelf to coastal glacimarine sedimentary environments during oscillations in the ice margin across the Western Ross Sea shelf, and coeval fluctuations in water depth. This paper applies spectral analysis techniques to depth- and time-series of sediment grain size (500 samples) for intervals of the core with adequate chronological data. Time series analysis of 0.5-1.0m-spaced grainsize data spanning sequences 9-11 (CRP-2/2A) and sequences 1-7 (CRP-3) suggests that the length of individual sequences correspond to Milankovitch frequencies, probably 41 k.y., but possibly as low as 100 k.y. Higher frequency periodic components at 23 k.y. (orbital precession) and 15-10 k.y. (sub-orbital) are recognised at the intrasequence-scale, and may represent climatic cycles akin to the ice rafting episodes described in the North Atlantic Ocean during the Quaternary. The cyclicity recorded by glacimarine sequences in CRP core provides direct evidence from the periphery of Antarctica for orbital oscillations in the size of the Oligocene-Early Miocene East Antarctic Ice Sheet.
Resumo:
Effects of soil water availability on transpiration efficiency (WUET), instantaneous water use efficiency (WUEi) and carbon isotope composition (delta(13)C) were investigated in 7-month-old plants of humid coastal (Gympie) and dry inland ( Hungry Hills) provenances of Eucalyptus cloeziana F. Muell. and in a dry inland provenance of E. argophloia Blakely (Chinchilla), supplied with 100 (W-100), 70 (W-70) and 50% (W-50) of their water requirements. At W-100, WUET of the three provenances were not significantly different but as available soil moisture decreased, E. argophloia produced greater biomass and demonstrated significantly higher WUET than either E. cloeziana provenance. Midday WUEi was not significantly affected by watering regime within each provenance but was lowest in E. argophloia. A decrease in soil water availability caused a consistent increase in delta(13)C values in all three provenances; however, delta(13)C values of E. argophloia in all three water regimes were significantly lower than those of E. cloeziana provenances, which did not differ significantly from each other. For all three provenances, delta(13)C was not correlated with WUEi but height and root collar diameter were negatively correlated to delta(13)C. There was little evidence of differences in delta(13)C, WUET and WUEi between E. cloeziana provenances but clear differences between E. cloeziana and E. argophloia. The high WUET, low WUEi and low delta(13)C for E. argophloia may have implications in the selection of Eucalyptus provenances for commercial forestry in low-rainfall regions.