36 resultados para Water Law, Land, Irrigation
em University of Queensland eSpace - Australia
Resumo:
The resource potential of shallow water tables for cropping systems has been investigated using the Australian sugar industry as a case study. Literature concerning shallow water table contributions to sugarcane crops has been summarised, and an assessment of required irrigation for water tables to depths of 2 m investigated using the SWIMv2.1 soil water balance model for three different soils. The study was undertaken because water availability is a major limitation for sugarcane and other crop production systems in Australia and knowledge on how best to incorporate upflow from water tables in irrigation scheduling is limited. Our results showed that for the three soils studied (representing a range of permeabilities as defined by near-saturated hydraulic conductivities), no irrigation would be required for static water tables within 1 m of the soil surface. Irrigation requirements when static water tables exceeded 1 m depth were dependent on the soil type and rooting characteristics (root depth and density). Our results also show that the near-saturated hydraulic conductivities are a better indicator of the ability of water tables below 1 m to supply sufficient upflow as opposed to soil textural classifications. We conclude that there is potential for reductions in irrigation and hence improvements in irrigation water use efficiency in areas where shallow water tables are a low salinity risk: either fresh, or the local hydrology results in net recharge. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Current policy issues surrounding management of the Great Artesian Basin - historical development of existing legislation and institutions - hydrological and historical background information - development of concerns over unsustainable use of resources and possible adverse environmental impacts - recent developments associated with the general reforms to water law and policy initiated by the Council of Australian Governments (COAG) - comparison of issues surrounding the Murray-Darling Basin and the Great Artesian Basin.
Resumo:
The toxicity of aluminium (Al) to fish in acidic waters has been well documented. It was therefore expected that Al toxicity would be significant in fish communities in Gadjarrigamarndah (Gadji) Creek, a seasonally flowing stream in tropical northern Australia. This creek receives acidic groundwater containing elevated concentrations of Al from earlier land irrigation of treated mine tailings water from the former Nabarlek uranium mine. It was hypothesised that Al toxicity was reduced by high levels of silica (Si) in the water, and the subsequent formation of Al-silicate complexes. This prompted a laboratory assessment of the toxicity of Gadji Creek water to sac-fry of the native fish, Mogurnda mogurnda, followed by more detailed investigation of the toxicity of Al and the influence of Si in reducing Al toxicity. No mortality of M. mogurnda sac-fry was observed in two toxicity tests using Gadji Creek water collected in August 1997 and September 1998. The majority of Al (80-95%) was calculated to be complexed with humic substances and sulfate, with <1% being complexed with silicate. Assessment of the influence of silica on the acute toxicity of Al in the absence of natural organic complexants (i.e. in reconstituted freshwater, pH 5) revealed that Si reduced Al toxicity. As the molar ratio of Si:Al was increased, the percent survival of M. mogurnda sac-fry increased until there was no significant (P > 0.05) difference from the controls. However, speciation modelling again predicted that little (<3%) Al complexed with silicate, with the speciation and bioavailability of Al remaining constant as the molar ratio of Si:Al increased. Therefore, the original hypothesis that Al-silicate complexes in solution reduced the toxicity of Al to M. mogurnda could not be supported. This potential mechanism, and an alternative hypothesis, that Si competes with Al for binding sites at the fish gill surface, requires further investigation. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The Environmental Sciences Division within Queensland Environmental Protection Agency works to monitor, assess and model the condition of the environment. The Division has as a legislative responsibility to produce a whole-of-government report every four years dealing environmental conditions and trends in a ”State of the Environment report” (SoE)[1][2][3]. State of Environment Web Service Reporting System is a supplementary web service based SoE reporting tool, which aims to deliver accurate, timely and accessible information on the condition of the environment through web services via Internet [4][5]. This prototype provides a scientific assessment of environmental conditions for a set of environmental indicators. It contains text descriptions and tables, charts and maps with spatiotemporal dimensions to show the impact of certain environmental indicators on our environment. This prototype is a template based indicator system, to which the administrator may add new sql queries for new indicator services without changing the architecture and codes of this template. The benefits are brought through a service-oriented architecture which provides an online query service with seamless integration. In addition, since it uses web service architecture, each individual component within the application can be implemented by using different programming languages and in different operating systems. Although the services showed in this demo are built upon two datasets of regional ecosystem and protection area of Queensland, it will be possible to report on the condition of water, air, land, coastal zones, energy resources, biodiversity, human settlements and natural culture heritage on the fly as well. Figure 1 shows the architecture of the prototype. In the next section, I will discuss the research tasks in the prototype.
Resumo:
FILTER is an innovative, CSIRO developed system for treating effluent using high rate land application and subsequent effluent recapture via a closely spaced, subsurface drainage network. We report on the summer performance of a FILTER system established in a subtropical environment on a relatively impermeable swelling clay soil underlain by a deep regional water table. Using secondary treated sewage effluent, the FILTER system produced effluent of tertiary nutrient standards (less than or equal to5 mg/L TN; less than or equal to1 mg/L TP), with salinity levels suitable for subsequent irrigation reuse (EC less than or equal to2.5 dS/m). Removal of faecal coliforms was considerably less effective. The hydraulic loading rate achieved was about two and a half times larger than conventional irrigation demand, but this was associated with high deep percolation losses (e 3 mm/day). Comparisons are made with the original FILTER system developed and tested by Jayawardane et al. in temperate Australia. Suggestions are made for modifications to, and further testing of FILTER in a subtropical environment.
Resumo:
A new model for Archaean granitoid magmatism is presented which reconciles the most important geochemical similarities and differences between tonalite-trondhjemite-granodiorite (TTG) and potassic granitoids. Trace element abundances reveal a strong arc magmatism signature in all studied granitoids from Barberton Mountain Land. Characteristic features include HFSE depletion as well as distinct enrichment peaks of fluid-sensitive trace elements such as Pb in N-MORB normalisation, clearly indicating that all studied granitoids are derived from refertilised mantle above subduction zones. We envisage hydrous basaltic (s.l.) melts as parental liquids, which underwent extensive fractional crystallisation. Distinctive residual cumulates evolved depending on initial water content. High-H2O melts crystallised garnet/amphibole together with pyroxenes and minor plagioclase, but no olivine. This fractionation path ultimately led to TTG-like melts. Less hydrous basaltic melts also crystallised garnet/amphibole, but the lower compatible element content indicates that olivine was also a liquidus phase. Pronounced negative Eu-anomalies of the granitic melts, correlating with Na, Ca and Al, indicate plagioclase to be of major importance. In the context of our model, the post-Archaean disappearance of TTG and concomitant preponderance of granites (s.l.), therefore, is explained with secular decrease of aqueous fluid transport into subduction zones and/or efficiency of deep fluid release from slabs.
Resumo:
Quantifying water losses in paddy fields assists estimation of water availability in rainfed lowland rice ecosystem. Little information is available on water balance in different toposequence positions of sloped rainfed lowland. Therefore, the aim of this work was to quantify percolation and the lateral water flow with special reference to the toposequential variation. Data used for the analysis was collected in Laos and northeast Thailand. Percolation and water tables were measured on a daily basis using a steel cylindrical tube with a lid and perforated PVC tubes, respectively. Percolation rate was determined using linear regression analysis of cumulative percolation. Assuming that the total amount of evaporation and transpiration was equivalent to potential evapotranspiration, the lateral water flow was estimated using the water balance equation. Separate perched water and groundwater tables were observed in paddy fields on coarse-textured soils. The percolation rate varied between 0 and 3 mm/day across locations, and the maximum water loss by lateral movement was more than 20 mm/day. Our results are in agreement with the previously reported findings, and the methodology of estimating water balance components appears reasonably acceptable. With regard to the toposequential variation, the higher the position in the topoesquence, the greater potential for water loss because of higher percolation and lateral flow rates.
Resumo:
We develop a model for exponential decay of broadband pulses, and examine its implications for experiments on optical precursors. One of the signature features of Brillouin precursors is attenuation with a less rapid decay than that predicted by Beer's Law. Depending on the pulse parameters and the model that is adopted for the dielectric properties of the medium, the limiting z-dependence of the loss has been described as z(-1/2), z(-1/3), exponential, or, in more detailed descriptions, some combination of the above. Experimental results in the search for precursors are examined in light of the different models, and a stringent test for sub-exponential decay is applied to data on propagation of 500 femtosecond pulses through 1-5 meters of water. (C) 2005 Optical Society of America.
Resumo:
Quantifying water losses in paddy fields assists estimation of water availability in rainfed lowland rice ecosystem. There is, however, no definite method for determining the water losses, and little information is available on water balance in different toposequence positions of a sloped rainfed lowland. Therefore, the aim of this work was to quantify percolation and the lateral water flow with special reference to the toposequential variation. Data used for the analysis was collected in Laos and northeast Thailand. Percolation and water tables were measured on a daily basis. The percolator is a steel cylindrical tube with a lid to prevent water loss from evapotranspiration. The water table meter is a short PVC tube for determination of perched water table and a long PVC tube for groundwater table, and the side is perforated with 5-mm diameter holes at 20-mm distance. Percolation rate was determined using linear regression analysis of cumulative percolation. Assuming that the total amount of evaporation and transpiration was equivalent to potential evapotranspiration, the lateral water flow was estimated using the water balance equation. Our results are in agreement with the previously reported findings, and the methodology of estimating water balance components appears reasonably acceptable. With regard to the toposequential variation, the higher position in the topoesquence, the greater potential of the water losses because of higher percolation and lateral flow rates.