83 resultados para Water - Purification - Biological treatment

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological wastewater treatment is a complex, multivariate process, in which a number of physical and biological processes occur simultaneously. In this study, principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to profile and characterise Lagoon 115E, a multistage biological lagoon treatment system at Melbourne Water's Western Treatment Plant (WTP) in Melbourne, Australia. In this study, the objective was to increase our understanding of the multivariate processes taking place in the lagoon. The data used in the study span a 7-year period during which samples were collected as often as weekly from the ponds of Lagoon 115E and subjected to analysis. The resulting database, involving 19 chemical and physical variables, was studied using the multivariate data analysis methods PCA and PARAFAC. With these methods, alterations in the state of the wastewater due to intrinsic and extrinsic factors could be discerned. The methods were effective in illustrating and visually representing the complex purification stages and cyclic changes occurring along the lagoon system. The two methods proved complementary, with each having its own beneficial features. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary objective: The study aimed to examine the changes in water distribution in the soft tissue during systemic steroid activity. Research design: A three-way cross-over, randomized, placebo-controlled, double-blind trial was used, including 4 weeks of fluticasone propionate pMDI 200 mug b.i.d. delivered via Babyhaler(R), budesonide pressurized metered dose inhaler (pMDI) 200 mug b.i.d. delivered via Nebuchamber(R) and placebo. Spacers were primed before use. In total, 40 children aged 1-3 years, with mild intermittent asthma were included. Twenty-five of the children completed all three treatments. At the end of each treatment period body impedance and skin ultrasonography were measured. Methods and procedures: We measured changes in water content of the soft tissues by two methods. Skin ultrasonography was used to detect small changes in dermal water content, and bioelectrical impedance was used to assess body water content and distribution. Main outcomes and results: We found an increase in skin density of the shin from fluticasone as measured by ultrasonography (p = 0.01). There was a tendency for a consistent elevation of impedance parameters from active treatments compared to placebo although overall this effect was not statistically significant (0.1< p <0.2). However, sub-analyses indicated a significant effect on whole-body and leg impedance from budesonide treatment (p <0.05). Conclusion: Decreased growth during inhaled steroid treatment seems to partly reflect generalized changes in body water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effluent water from shrimp ponds typically contains elevated concentrations of dissolved nutrients and suspended particulates compared to influent water. Attempts to improve effluent water quality using filter feeding bivalves and macroalgae to reduce nutrients have previously been hampered by the high concentration of clay particles typically found in untreated pond effluent. These particles inhibit feeding in bivalves and reduce photosynthesis in macroalgae by increasing effluent turbidity. In a small-scale laboratory study, the effectiveness of a three-stage effluent treatment system was investigated. In the first stage, reduction in particle concentration occurred through natural sedimentation. In the second stage, filtration by the Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), further reduced the concentration of suspended particulates, including inorganic particles, phytoplankton, bacteria, and their associated nutrients. In the final stage, the macroalga, Gracilaria edulis (Gmelin) Silva, absorbed dissolved nutrients. Pond effluent was collected from a commercial shrimp farm, taken to an indoor culture facility and was left to settle for 24 h. Subsamples of water were then transferred into laboratory tanks stocked with oysters and maintained for 24 h, and then transferred to tanks containing macroalgae for another 24 h. Total suspended solid (TSS), chlorophyll a, total nitrogen (N), total phosphorus (P), NH4+, NO3-, and PO43-, and bacterial numbers were compared before and after each treatment at: 0 h (initial); 24 h (after sedimentation); 48 h (after oyster filtration); 72 h (after macroalgal absorption). The combined effect of the sequential treatments resulted in significant reductions in the concentrations of all parameters measured. High rates of nutrient regeneration were observed in the control tanks, which did not contain oysters or macroalgae. Conversely, significant reductions in nutrients and suspended particulates after sedimentation and biological treatment were observed. Overall, improvements in water quality (final percentage of the initial concentration) were as follows: TSS (12%); total N (28%); total P (14%); NH4+ (76%); NO3- (30%); PO43-(35%); bacteria (30%); and chlorophyll a (0.7%). Despite the probability of considerable differences in sedimentation, filtration and nutrient uptake rates when scaled to farm size, these results demonstrate that integrated treatment has the potential to significantly improve water quality of shrimp farm effluent. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological reactions during the settling and decant periods of Sequencing Batch Reactors (SBRs) are generally ignored as they are not easily measured or described by modelling approaches. However, important processes are taking place, and in particular when the influent is fed into the bottom of the reactor at the same time (one of the main features of the UniFed process), the inclusion of these stages is crucial for accurate process predictions. Due to the vertical stratification of both liquid and solid components, a one-dimensional hydraulic model is combined with a modified ASM2d biological model to allow the prediction of settling velocity, sludge concentration, soluble components and biological processes during the non-mixed periods of the SBR. The model is calibrated on a full-scale UniFed SBR system with tracer breakthrough tests, depth profiles of particulate and soluble compounds and measurements of the key components during the mixed aerobic period. This model is then validated against results from an independent experimental period with considerably different operating parameters. In both cases, the model is able to accurately predict the stratification and most of the biological reactions occurring in the sludge blanket and the supernatant during the non-mixed periods. Together with a correct description of the mixed aerobic period, a good prediction of the overall SBR performance can be achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complete biological nutrient removal (BNR) in a single tank, sequencing batch reactor (SBR) process, is demonstrated here at full-scale on a typical domestic wastewater. The unique feature of the UniFed process is the introduction of the influent into the settled sludge blanket during the settling and decant periods of the SBR operation. This achieves suitable conditions for denitrification and anaerobic phosphate release which is critical to successful biological phosphorus removal, It also achieves a selector effect, which helps in generating a compact, well settling biomass in the reactor. The results of this demonstration show that it is possible to achieve well over 90% removal of GOD, nitrogen and phosphorus in such a process. Effluent quality achieved over a six-month operating period directly after commissioning was: 29 mg/l GOD, 0.5 mg/l NH4-N, 1.5 mg/l NOx-N and 1.5 mg/l PO4-P (50%-iles of daily samples). During an 8-day, intensive sampling period, the effluent BOD5 was

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective The syndrome of inappropriate secretion of antidiuretic hormone is a rare disorder in dogs characterised by hypo-osmolality and persistent arginine vasopressin production in the absence of hypovolaemia and/or hypotension. The study describes the efficacy and safety of the nonpeptide selective arginine vasopressin V-2 receptor antagonist OPC-31260 in a dog with the naturally occurring syndrome. Design The detailed case history of a dog with spontaneous syndrome of inappropriate secretion of antidiuretic hormone that received long-term therapy with oral OPC-31260 is presented. Effects of the first dose of OPC-31260 and of a dose administered after a continuous dosing period of 12 days are reported. Procedure Packed cell volume, plasma sodium, total protein, arginine vasopressin, renin activity, atrial natriuretic peptide, urine specific gravity, urine output, heart rate and body weight were monitored for 2 h before, and for 4 h after, the first dose of OPC-31260. The same parameters plus plasma osmolality and urine osmolality were monitored when an identical dose was administered after 12 days of therapy. Results Oral administration of OPC-31260 at 3 mg/kg body weight resulted in marked aquaresis with increased urine output and decline in urine specific gravity within 1 h. Corresponding increases in concentrations of plasma sodium, plasma osmolality and plasma renin activity were recorded over a 4 h period. Arginine vasopressin concentration remained inappropriately elevated throughout the study. Results were similar when the trial procedure was repeated after a stabilisation period of 12 days. Long-term therapy with OPC-31260 at a dose of 3 mg/kg body weight orally every 12 h resulted in good control of clinical signs with no deleterious effects detected during a 3-year follow-up period. Despite sustained clinical benefits observed in this case, plasma sodium did not normalise with continued administration of the drug. Conclusions Treatment of a dog with naturally occurring syndrome of inappropriate secretion of antidiuretic hormone with OPC-31260 at 3 mg/kg body weight orally every 12 h resulted in marked aquaresis and significant palliation of clinical signs with no discernible side-effects detected over a 3-year period. Thus, OPC-31260 appears to offer a feasible medical alternative to water restriction for treatment of dogs with syndrome of inappropriate secretion of antidiuretic hormone. Higher doses of OPC-31260 may be required to achieve and maintain normal plasma sodium in dogs with this syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed ammonia-water vapor postsynthesis treatment provides a simple and convenient method for stabilizing mesostructured silica films. X-ray diffraction, transmission electron microscopy, nitrogen adsorption/desorption, and solid-state NMR (C-13, Si-29) were applied to study the effects of mixed ammonia-water vapor at 90 degreesC on the mesostructure of the films. An increased cross-linking of the silica network was observed. Subsequent calcination of the silica films was seen to cause a bimodal pore-size distribution, with an accompanying increase in the volume and surface area ratios of the primary (d = 3 nm) to secondary (d = 5-30 nm) pores. Additionally, mixed ammonia-water treatment was observed to cause a narrowing of the primary pore-size distribution. These findings have implications for thin film based applications and devices, such as sensors, membranes, or surfaces for heterogeneous catalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibitory effects of nitrite (NO2-)/free nitrous acid (HNO2-FNA) on the metabolism of Nitrobacter were investigated using a method allowing the decoupling of the growth and energy generation processes. A lab-scale sequencing batch reactor was operated for the enrichment of a Nitrobacter culture. Fluorescent in situ hybridization (FISH) analysis showed that 73% of the bacterial population was Nitrobacter. Batch tests were carried out to assess the oxygen and nitrite consumption rates of the enriched culture at low and high nitrite levels, in the presence or absence of inorganic carbon. It was observed that in the absence of CO2, the Nitrobacter culture was able to oxidize nitrite at a rate that is 76% of that in the presence of CO2, with an oxygen consumption rate that is 85% of that measured in the presence of CO2. This enabled the impacts of nitrite/FNA on the catabolic and anabolic processes of Nitrobacter to be assessed separately. FNA rather than nitrite was likely the actual inhibitor to the Nitrobacter metabolism. It was revealed that FNA of up to 0.05 mg HNO2-N center dot L-1 (3.4 mu M), which was the highest FNA concentration used in this study, did not have any inhibitory effect on the catabolic processes of Nitrobacter. However, FNA initiated its inhibition to the anabolic processes of Nitrobacter at approximately 0.011 mg HNO2-N center dot L-1 (0.8 mu M), and completely stopped biomass synthesis at a concentration of approximately 0.023 mg HNO2-N center dot L-1 (1.6 mu M). The inhibitory effect could be described by an empirical inhibitory model proposed in this paper, but the underlying mechanisms remain to be revealed.