84 resultados para Waste footwear industry
em University of Queensland eSpace - Australia
Resumo:
The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [C-13]acetate was used in SIP to label the DNA of the denitrifiers. The [C-13]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the C-13 library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking Up [C-14] acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the waste-water industry to enhance denitrification.
Resumo:
This manual has been developed to help the Australian dairy processing industry increase its competitiveness through increased awareness and uptake of eco-efficiency. The manual seeks to consolidate and build on existing knowledge, accumulated through projects and initiatives that the industry has previously undertaken to improve its use of raw materials and resources and reduce the generation of wastes. Where there is an existing comprehensive report or publication, the manual refers to this for further information. Eco-efficiency is about improving environmental performance to become more efficient and profitable. It is about producing more with less. It involves applying strategies that will not only ensure efficient use of resources and reduction in waste, but will also reduce costs. This chapter outlines the environmental challenges faced by Australian dairy processors. The manual explores opportunities for reducing environmental impacts in relation to water, energy, product yield, solid and liquid waste reduction and chemical use.
Resumo:
View of exterior wall to warehouse.
Resumo:
Detailed view of downpipes and drainage grill.
Resumo:
View past tiered amphitheatre and offices above to air strip beyond.
Resumo:
View past timber blinds to balcony and timber sunscreens.
Resumo:
View of post being hoisted into position during construction.
Resumo:
View of warehouse exterior.
Resumo:
Detailed view of poles used in construction. Poles were spliced in their length with steel bars (like 3 pin plugs) and these joints were restrained from splitting with steel strap belts. The belts were tightened with opposing wedges like the old Greene & Greene wrought iron detail.
Resumo:
View of warehouse exterior.
Resumo:
View to underside of roof with steel beam and insulation.
Resumo:
Detailed view of cast iron brackets connecting beams and posts.