7 resultados para WAVELET ANALYSIS
em University of Queensland eSpace - Australia
Resumo:
Objective: To examine the relationship between the auditory brain-stem response (ABR) and its reconstructed waveforms following discrete wavelet transformation (DWT), and to comment on the resulting implications for ABR DWT time-frequency analysis. Methods: ABR waveforms were recorded from 120 normal hearing subjects at 90, 70, 50, 30, 10 and 0 dBnHL, decomposed using a 6 level discrete wavelet transformation (DWT), and reconstructed at individual wavelet scales (frequency ranges) A6, D6, D5 and D4. These waveforms were then compared for general correlations, and for patterns of change due to stimulus level, and subject age, gender and test ear. Results: The reconstructed ABR DWT waveforms showed 3 primary components: a large-amplitude waveform in the low-frequency A6 scale (0-266.6 Hz) with its single peak corresponding in latency with ABR waves III and V; a mid-amplitude waveform in the mid-frequency D6 scale (266.6-533.3 Hz) with its first 5 waves corresponding in latency to ABR waves 1, 111, V, VI and VII; and a small-amplitude, multiple-peaked waveform in the high-frequency D5 scale (533.3-1066.6 Hz) with its first 7 waves corresponding in latency to ABR waves 1, 11, 111, IV, V, VI and VII. Comparisons between ABR waves 1, 111 and V and their corresponding reconstructed ABR DWT waves showed strong correlations and similar, reliable, and statistically robust changes due to stimulus level and subject age, gender and test ear groupings. Limiting these findings, however, was the unexplained absence of a small number (2%, or 117/6720) of reconstructed ABR DWT waves, despite their corresponding ABR waves being present. Conclusions: Reconstructed ABR DWT waveforms can be used as valid time-frequency representations of the normal ABR, but with some limitations. In particular, the unexplained absence of a small number of reconstructed ABR DWT waves in some subjects, probably resulting from 'shift invariance' inherent to the DWT process, needs to be addressed. Significance: This is the first report of the relationship between the ABR and its reconstructed ABR DWT waveforms in a large normative sample. (C) 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Dizziness and or unsteadiness, associated with episodes of loss of balance, are frequent complaints in those suffering from persistent problems following a whiplash injury. Research has been inconclusive with respect to possible aetiology, discriminative tests and analyses used. The aim of this pilot research was to identify the test conditions and the most appropriate method for the analysis of sway that may differentiate subjects with persistent whiplash associated disorders (WAD) from healthy controls. The six conditions of the Clinical Test for Sensory Interaction in Balance was performed in both comfortable and tandem stance in 20 subjects with persistent WAD compared to 20 control subjects. The analyses were carried out using a traditional method of measurement, total sway distance, to results obtained from the use of wavelet analysis. Subjects with WAD were significantly less able to complete the tandem stance tests on a firm surface than controls. In comfortable stance, using wavelet analysis, significant differences between subjects with WAD and the control group were evident in total energy of the trace for all test conditions apart from eyes open on the firm surface. In contrast, the results of the analysis using total sway distance revealed no significant differences between groups across all six conditions. Wavelet analysis may be more appropriate for detecting disturbances in balance in whiplash subjects because the technique allows separation of the noise from the underlying systematic effect of sway. These findings will be used to direct future studies on the aeitiology of balance disturbances in WAD. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.
Resumo:
Objective: To use the over-complete discrete wavelet transform (OCDWT) to further examine the dual structure of auditory brainstem response (ABR) in the dog. Methods: ABR waveforms recorded from 20 adult dogs at supra-threshold (90 and 70 dBnHL) and threshold (0-15 dBSL) levels were decomposed using a six level OCDWT and reconstructed at individual scales (frequency ranges) A6 (0-391 Hz), D6 (391-781 Hz), and D5 (781-1563 Hz). Results: At supra-threshold stimulus levels, the A6 scale (0-391 Hz) showed a large amplitude waveform with its prominent wave corresponding in latency with ABR waves II/III; the D6 scale (391-781 Hz) showed a small amplitude waveform with its first four waves corresponding in latency to ABR waves I, II/III, V, and VI; and the D5 scale (781-1563 Hz) showed a large amplitude, multiple peaked waveform with its first six waves corresponding in latency to ABR waves I, II, III, IV, V, and VI. At threshold stimulus levels (0-15 dBSL), the A6 scale (0-391 Hz) continued to show a relatively large amplitude waveform, but both the D6 and D5 scales (391781 and 781-1563 Hz, respectively) now showed relatively small amplitude waveforms. Conclusions: A dual structure exists within the ABR of the dog, but its relative structure changes with stimulus level. Significance: The ABR in the dog differs from that in the human both in the relative contributions made by its different frequency components, and the way these components change with stimulus level. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Turbulent flow around a rotating circular cylinder has numerous applications including wall shear stress and mass-transfer measurement related to the corrosion studies. It is also of interest in the context of flow over convex surfaces where standard turbulence models perform poorly. The main purpose of this paper is to elucidate the basic turbulence mechanism around a rotating cylinder at low Reynolds numbers to provide a better understanding of flow fundamentals. Direct numerical simulation (DNS) has been performed in a reference frame rotating at constant angular velocity with the cylinder. The governing equations are discretized by using a finite-volume method. As for fully developed channel, pipe, and boundary layer flows, a laminar sublayer, buffer layer, and logarithmic outer region were observed. The level of mean velocity is lower in the buffer and outer regions but the logarithmic region still has a slope equal to the inverse of the von Karman constant. Instantaneous flow visualization revealed that the turbulence length scale typically decreases as the Reynolds number increases. Wavelet analysis provided some insight into the dependence of structural characteristics on wave number. The budget of the turbulent kinetic energy was computed and found to be similar to that in plane channel flow as well as in pipe and zero pressure gradient boundary layer flows. Coriolis effects show as an equivalent production for the azimuthal and radial velocity fluctuations leading to their ratio being lowered relative to similar nonrotating boundary layer flows.