12 resultados para Vulgaris L

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nutritive value of transgenic peas expressing an a-amylase inhibitor (alpha-Ail) was evaluated with broiler chickens. The effects of feeding transgenic peas on the development of visceral organs associated with digestion and nutrient absorption were also examined. The chemical composition of the conventional and the transgenic peas used in this study were similar. In the two feeding trials, that were conducted normal and transgenic peas were incorporated into a maize-soybean diet at concentrations up to 500 g kg(-1). The diets were balanced to contain similar levels of apparent metabolisable energy (AME) and amino acids. In the first trial, the birds were fed the diets from 3 to 17days post-hatching and with levels of transgenic peas at 250 g kg(-1) or greater there was a significant reduction in body weight but an increase in feed intake resulting in deceased feed conversion efficiency. In the second trial, in which the birds were fed diets containing 300 g kg(-1) transgenic peas until 40 days of age, growth performance was significantly reduced. It was also demonstrated that the ileal starch digestibility coefficient (0.80 vs 0.42) was significantly reduced in the birds fed transgenic peas. Determination of AME and ileal digestibility of amino acids in 5-week-old broilers demonstrated a significant reduction in AME (12.12 vs 5.08 MJ kg(-1) DM) in the birds fed the transgenic peas. The AME value recorded for transgenic peas reflected the lower starch digestibility of this line. Real digestion of protein and amino acids was unaffected by treatment. Expression of a-Ail in peas did not appear to affect bird health or the utilisation of dietary protein. However, the significant reduction in ileal digestion of starch in transgenic peas does reduce the utility of this feedstuff in monogastric diets where efficient energy utilisation is required. (c) 2006 Society of Chemical Industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nature and extent of reproductive isolation was examined between a new self-compatible hybrid species Senecio eboracensis (2n = 40) and its parents, self-incompatible S. squalidus (2n = 20) and self-compatible S. vulgaris (2n = 40). The triploid F-1 of S. eboracensis x S. squalidus exhibited very low seed set ((x) over bar = 0.63%), and F-2 and F-3 progeny were able to recover nominal levels of fertility ((x) over bar = 23.9 and 9.7%), while F-1 and F-2 offspring of S. eboracensis x S. vulgaris showed reduced seed set ((x) over bar = 63.8 and 58.8%). In both cases, evidence from previous work indicates that reduced fertility is associated with meiotic chromosome mispairing, and is a likely consequence of recombining both parental genomes within this new taxon. No hybrid offspring between S. eboracensis and S. squalidus were found in the wild, and only one such hybrid was recorded among 769 progeny produced by S. eboracensis surrounded by S. squalidus on an experimental plot. Natural crossing between S. eboracensis and S. vulgaris was recorded to be very low (between 0 and 1.46%) in the wild, but rose to 18.3% when individuals of S. eboracensis were surrounded by plants of S. vulgaris. It was concluded that strong breeding barriers exist between the new hybrid species and its two parents. Prezygotic isolation between S. eboracensis and S. vulgaris is likely to be largely due to both species reproducing by predominant self-fertilisation. However, differences recorded for germination, seedling survival, time of flowering and characters associated with pollinator attraction, plus significant clumping of juvenile and adult conspecifics in the wild, probably also contribute to reproductive isolation and ecological differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research involving starch grains recovered from archaeological contexts has highlighted the need for a review of the mechanisms and consequences of starch degradation specifically relevant to archaeology. This paper presents a review of the plant physiological and soil biochemical literature pertinent to the archaeological investigation of starch grains found as residues on artefacts and in archaeological sediments. Preservative and destructive factors affecting starch survival, including enzymes, clays, metals and soil properties, as well as differential degradation of starches of varying sizes and amylose content, were considered. The synthesis and character of chloroplast-formed 'transitory' starch grains, and the differentiation of these from 'storage' starches formed in tubers and seeds were also addressed. Findings of the review include the higher susceptibility of small starch grains to biotic degradation, and that protective mechanisms are provided to starch by both soil aggregates and artefact surfaces. These findings suggest that current reasoning which equates higher numbers of starch grains on an artefact than in associated sediments with the use of the artefact for processing starchy plants needs to be reconsidered. It is argued that an increased understanding of starch decomposition processes is necessary to accurately reconstruct both archaeological activities involving starchy plants and environmental change investigated through starch analysis. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Progress in bean breeding programs requires the exploitation of genetic variation that is present among races or through introgression across gene pools of Phaseolus vulgaris L. Of the two major common bean gene pools, the Andean gene pool seems to have a narrow genetic base, with about 10% of the accessions in the CIAT core collection presenting evidence of introgression. The objective of this study was to quantify the degree of spontaneous introgression in a sample of common bean landraces from the Andean gene pool. The effects of introgression on morphological, economic and nutritional attributes were also investigated. Homogeneity analysis was performed on molecular marker data from 426 Andean-type accessions from the primary centres of origin of the CIAT common bean core collection and two check varieties. Quantitative attribute diversity for 15 traits was studied based on the groups found from the cluster analysis of marker prevalence indices computed for each accession. The two-group summary consisted of one group of 58 accessions (14%) with low prevalence indices and another group of 370 accessions (86%) with high prevalence indices. The smaller group occupied the outlying area of points displayed from homogeneity analysis, yet their geographic origin was widely distributed over the Andean region. This group was regarded as introgressed, since its accessions displayed traits that are associated with the Middle American gene pool: high resistance to Andean disease isolates but low resistance to Middle American disease isolates, low seed weight and high scores for all nutrient elements. Genotypes generated by spontaneous introgression can be helpful for breeders to overcome the difficulties in transferring traits between gene pools.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Pisum sativium, the RAMOSUS genes RMS1, RMS2, and RMS5 regulate shoot branching via physiologically defined mobile signals. RMS1 is most likely a carotenoid cleavage enzyme and acts with RMS5 to control levels of an as yet unidentified mobile branching inhibitor required for auxin inhibition of branching. Our work provides molecular, genetic, and physiological evidence that RMS1 plays a central role in a shoot-to-root-to-shoot feedback system that regulates shoot branching in pea. Indole-3-acetic acid (IAA) positively regulates RMS1 transcript level, a potentially important mechanism for regulation of shoot branching by IAA. In addition, RMS1 transcript levels are dramatically elevated in rms3, rms4, and rms5 plants, which do not contain elevated IAA levels. This degree of upregulation of RMS1 expression cannot be achieved in wild-type plants by exogenous IAA application. Grafting studies indicate that an IAA-independent mobile feedback signal contributes to the elevated RMS1 transcript levels in rms4 plants. Therefore, the long-distance signaling network controlling branching in pea involves IAA, the RMS1 inhibitor, and an IAA-independent feedback signal. Consistent with physiological studies that predict an interaction between RMS2 and RMS1, rms2 mutations appear to disrupt this IAA-independent regulation of RMS1 expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modification of cell wall components such as cellulose, hemicellulose and pectin plays an important role in cell expansion. Cell expansion is known to be diminished by cations but it is unknown if this results from cations reacting with pectin or other cell wall components. Autolysis of cell wall material purified from bean root (Phaseolus vulgaris L.) occurred optimally at pH 5.0 and released mainly neutral sugars but very little uronic acid. Autolytic release of neutral sugars and uronic acid was decreased when cell wall material was loaded with Ca, Cu, Sr, Zn, Al or La cations. Results were also extended to a metal-pectate model system, which behaved similarly to cell walls and these cations also inhibited the enzymatic degradation by added polygalacturonase (EC 3.2.1.15). The extent of sugar release from cation-loaded cell wall material and pectate gels was related to the degree of cation saturation of the substrate, but not to the type of cation. The binding strength of the cations was assessed by their influence on the buffer capacity of the cell wall and pectate. The strongly bound cations (Cu, Al or La) resulted in higher cation saturation of the substrate and decreased enzymatic degradability than the weakly held cations (Ca, Sr and Zn). The results indicate that the junction zones between pectin molecules can peel open with weakly held cations, allowing polygalacturonase to cleave the hairy region of pectin, while strongly bound cations or high concentrations of cations force the junction zone closed, minimising enzymatic attack on the pectin backbone. (C) 2004 Elsevier SAS. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nodulation in legumes provides a major conduit of available nitrogen into the biosphere. The development of nitrogen-fixing nodules results from a symbiotic interaction between soil bacteria, commonly called rhizobia, and legume plants. Molecular genetic analysis in both model and agriculturally important legume species has resulted in the identification of a variety of genes that are essential for the establishment, maintenance and regulation of this symbiosis. Autoregulation of nodulation (AON) is a major internal process by which nodule numbers are controlled through prior nodulation events. Characterisation of AON-deficient mutants has revealed a novel systemic signal transduction pathway controlled by a receptor-like kinase. This review reports our present level of understanding on the short- and long-distance signalling networks controlling early nodulation events and AON.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fast, reproducible, and efficient transformation procedure employing Agrobacterium rhizogenes was developed for Phaseolus vulgaris L. wild accessions, landraces, and cultivars and for three other species belonging to the genus Phaseolus: R coccineus, P lunatus, and P acutifolius. Induced hairy roots are robust and grow quickly. The transformation frequency is between 75 and 90% based on the 35-S promoter-driven green fluorescent protein and beta-glucuronidase expression reporter constructs. When inoculated with Rhizobium tropici, transgenic roots induce normal determinate nodules that fix nitrogen as efficiently as inoculated standard roots. The A. rhizogenes-induced hairy root transformation in the genus Phaseolus sets the foundation for functional genomics programs focused on root physiology, root metabolism, and root-microbe interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Common bean (Phaseolus vulgaris L.), an annual diploid (2n=2x=22) species (Maréchal 1970; Delgado Salinas 1985), is adapted to mild temperatures (18°C to 35°C) and grown worldwide in a broad range of environments and in diverse production systems. Common bean is grown for its green leaves, green pods, and green and dry seeds. Dry leaves, threshed pods and stalks are fed to animals and used as fuel for cooking, especially in the developing countries of Africa and Asia (Singh 1991).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seven years of multi-environment yield trials of navy bean (Phaseolus vulgaris L.) grown in Queensland were examined. As is common with plant breeding evaluation trials, test entries and locations varied between years. Grain yield data were analysed for each year using cluster and ordination analyses (pattern analyses). These methods facilitate descriptions of genotype performance across environments and the discrimination among genotypes provided by the environments. The observed trends for genotypic yield performance across environments were partly consistent with agronomic and disease reactions at specific environments and also partly explainable by breeding and selection history. In some cases, similarities in discrimination among environments were related to geographic proximity, in others management practices, and in others similarities occurred between geographically widely separated environments which differed in management practices. One location was identified as having atypical line discrimination. The analysis indicated that the number of test locations was below requirements for adequate representation of line x environment interaction. The pattern analyses methods used were an effective aid in describing the patterns in data for each year and illustrated the variations in adaptive patterns from year to year. The study has implications for assessing the number and location of test sites for plant breeding multi-environment trials, and for the understanding of genetic traits contributing to line x environment interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Table beet production in the Lockyer Valley of south-eastern Queensland is known to be adversely affected by soilborne root disease from infection by Pythium spp. However, little is known regarding the species or genotypes that are the causal agents of both pre- and post-emergence damping off. Based on RFLP analysis with HhaI, HinfI and MboI of the PCR amplified ITS region DNA from soil and diseased plant samples, the majority of 130 Pythium isolates could be grouped into three genotypes, designated LVP A, LVP B and LVP C. These groups comprised 43, 41 and 7% of all isolates, respectively. Deoxyribonucleic acid sequence analysis of the ITS region indicated that LVP A was a strain of Pythium aphanidermatum, with greater than 99% similarity to the corresponding P. aphanidermatum sequences from the publicly accessible databases. The DNA sequences from LVP B and LVP C were most closely related to P. ultimum and P. dissotocum, respectively. Lower frequencies of other distinct isolates with unique RFLP patterns were also obtained with high levels of similarity (> 97%) to P. heterothallicum, P. periplocum and genotypes of P. ultimum other than LVP B. Inoculation trials of 1- and 4-week-old beet seedlings indicated that compared with isolates of the LVP B genotype, a higher frequency of LVP A isolates caused disease. Isolates with the LVP A, LVP B and LVP C genotypes were highly sensitive to the fungicide Ridomil MZ, which suppressed radial growth on V8 agar between approximately four and thirty fold at 5 mu g/mL metalaxyl and 40 mu g/mL mancozeb, a concentration far lower than the recommended field application rate.