3 resultados para Vortex-Induced Vibration (Viv)

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acuity for elbow joint position sense (JPS) is reduced when head position is modified. Movement of the head is associated with biomechanical changes in the neck and shoulder musculoskeletal system, which may explain changes in elbow JPS. The present study aimed to determine whether elbow JPS is also influenced by illusory changes in head position. Simultaneous vibration of sternocleidomastoid (SCM) and the contralateral splenius was applied to 14 healthy adult human subjects. Muscle vibration or passive head rotation was introduced between presentation and reproduction of a target elbow position. Ten out of 14 subjects reported illusions consistent with lengthening of the vibrated muscles. In these 10 subjects, absolute error for elbow JPS increased with left SCM/right splenius vibration but not with right SCM/left splenius vibration. Absolute error also increased with right rotation, with a trend for increased error with left rotation. These results demonstrated that both actual and illusory changes in head position are associated with diminished acuity for elbow JPS, suggesting that the influence of head position on upper limb JPS depends, at least partially, on perceived head position.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A non-invasive in vivo technique was developed to evaluate changes in wrist joint stability properties induced by increased co-activation of the forearm muscles in a gripping task. Mechanical vibration at 45, 50 and 55 Hz was applied to the radial head in ten healthy volunteers. Vibrations of the styloid process of the radius and the distal end of the metacarpal bone of the index finger were measured with triaxial accelerometers. Joint stability properties were quantified by the transfer function gain between accelerations on either side of the wrist-joint. Gain was calculated with the muscles at rest and at five force levels ranging from 5% to 25% of maximum grip force (%MF). During contraction the gain was significantly greater than in control trial (0%MF) for all contractions levels at 45 and 50 Hz and a trend for 15%MF and higher at 55 Hz. Group means of contraction force and gain were significantly correlated at 45 (R-2 = 0.98) and 50 Hz (R-2 = 0.72), but not at 55 Hz (R-2 = 0.10). In conclusion, vibration transmission gain may provide a method to evaluate changes in joint stability properties. (c) 2005 Published by Elsevier Ltd.