3 resultados para Void Network

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Filaments of galaxies are known to stretch between galaxy clusters at all redshifts in a complex manner. In this Letter, we present an analysis of the frequency and distribution of intercluster galaxy filaments selected from the 2dF Galaxy Redshift Survey. Out of 805 cluster-cluster pairs, we find at least 40 per cent have bona fide filaments. We introduce a filament classification scheme and divide the filaments into several types according to their visual morphology: straight (lying on the cluster-cluster axis; 37 per cent), warped or curved (lying off the cluster-cluster axis; 33 per cent), sheets (planar configurations of galaxies; 3 per cent), uniform (1 per cent) and irregular (26 per cent). We find that straight filaments are more likely to reside between close cluster pairs and they become more curved with increasing cluster separation. This curving is toward a larger mass concentration in general. We also show that the more massive a cluster is, the more likely it is to have a larger number of filaments. Our results are found to be consistent with a cold dark matter cosmology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present 547 optical redshifts obtained for galaxies in the region of the Horologium-Reticulum supercluster (HRS) using the 6 degrees field (6dF) multifiber spectrograph on the UK Schmidt Telescope at the Anglo-Australian Observatory. The HRS covers an area of more than 12 degrees x 12 degrees on the sky centered at approximately alpha = 03(h)19(m), delta = 50 degrees 02'. Our 6dF observations concentrate on the intercluster regions of the HRS, from which we describe four primary results. First, the HRS spans at least the redshift range from 17,000 to 22,500 km s(-1). Second, the overdensity of galaxies in the intercluster regions of the HRS in this redshift range is estimated to be 2.4, or delta rho/(rho) over bar similar to 1: 4. Third, we find a systematic trend of increasing redshift along a southeast-northwest spatial axis in the HRS, in that the mean redshift of HRS members increases by more than 1500 km s(-1) from southeast to northwest over a 12 degrees region. Fourth, the HRS is bimodal in redshift with a separation of similar to 2500 km s(-1) (35 Mpc) between the higher and lower redshift peaks. This fact is particularly evident if the above spatial-redshift trend is fitted and removed. In short, the HRS appears to consist of two components in redshift space, each one exhibiting a similar systematic spatial-redshift trend along a southeast-northwest axis. Lastly, we compare these results from the HRS with the Shapley supercluster and find similar properties and large-scale features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present 118 new optical redshifts for galaxies in 12 clusters in the Horologium-Reticulum supercluster (HRS) of galaxies. For 76 galaxies, the data were obtained with the Dual Beam Spectrograph on the 2.3 m telescope of the Australian National University at Siding Spring Observatory. After combining 42 previously unpublished redshifts with our new sample, we determine mean redshifts and velocity dispersions for 13 clusters in which previous observational data were sparse. In 6 of the 13 clusters, the newly determined mean redshifts differ by more than 750 km s(-1) from the published values. In three clusters, A3047, A3109, and A3120, the redshift data indicate the presence of multiple components along the line of sight. The new cluster redshifts, when combined with other reliable mean redshifts for clusters in the HRS, are found to be distinctly bimodal. Furthermore, the two redshift components are consistent with the bimodal redshift distribution found for the intercluster galaxies in the HRS by Fleenor and coworkers.