8 resultados para Vision-based row tracking algorithm
em University of Queensland eSpace - Australia
Resumo:
We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.
Resumo:
This paper presents the implementation of a modified particle filter for vision-based simultaneous localization and mapping of an autonomous robot in a structured indoor environment. Through this method, artificial landmarks such as multi-coloured cylinders can be tracked with a camera mounted on the robot, and the position of the robot can be estimated at the same time. Experimental results in simulation and in real environments show that this approach has advantages over the extended Kalman filter with ambiguous data association and various levels of odometric noise.
Resumo:
Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.
Resumo:
In this paper, a new differential evolution (DE) based power system optimal available transfer capability (ATC) assessment is presented. Power system total transfer capability (TTC) is traditionally solved by the repeated power flow (RPF) method and the continuation power flow (CPF) method. These methods are based on the assumption that the productions of the source area generators are increased in identical proportion to balance the load increment in the sink area. A new approach based on DE algorithm to generate optimal dispatch both in source area generators and sink area loads is proposed in this paper. This new method can compute ATC between two areas with significant improvement in accuracy compared with the traditional RPF and CPF based methods. A case study using a 30 bus system is given to verify the efficiency and effectiveness of this new DE based ATC optimization approach.
Resumo:
In this paper we develop an evolutionary kernel-based time update algorithm to recursively estimate subset discrete lag models (including fullorder models) with a forgetting factor and a constant term, using the exactwindowed case. The algorithm applies to causality detection when the true relationship occurs with a continuous or a random delay. We then demonstrate the use of the proposed evolutionary algorithm to study the monthly mutual fund data, which come from the 'CRSP Survivor-bias free US Mutual Fund Database'. The results show that the NAV is an influential player on the international stage of global bond and stock markets.
Resumo:
A novel algorithm for performing registration of dynamic contrast-enhanced (DCE) MRI data of the breast is presented. It is based on an algorithm known as iterated dynamic programming originally devised to solve the stereo matching problem. Using artificially distorted DCE-MRI breast images it is shown that the proposed algorithm is able to correct for movement and distortions over a larger range than is likely to occur during routine clinical examination. In addition, using a clinical DCE-MRI data set with an expertly labeled suspicious region, it is shown that the proposed algorithm significantly reduces the variability of the enhancement curves at the pixel level yielding more pronounced uptake and washout phases.