2 resultados para Visible spectroscopy

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visible pump-probe spectroscopy has been used to identify and characterize short-lived metal-to-metal charge transfer (MMCT) excited states in a group of cyano-bridged mixed-valence complexes of the formula [(LCoNCMII)-N-III(CN)(5)](-), where L is a pentadentate macrocyclic pentaamine (L-14) or triamine-dithiaether (L-14S) and M is Fe or Ru. Nanosecond pump-probe spectroscopy on frozen solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at 11 K enabled the construction of difference transient absorption spectra that featured a rise in absorbance in the region of 350-400 nm consistent with the generation of the ferricyanide chromophore of the photoexcited complex. The MMCT excited state of the Ru analogue [(LCoNCRuII)-Co-14-N-III(CN)(5)](-) was too short-lived to allow its detection. Femtosecond pump-probe spectroscopy on aqueous solutions of [(LCoNCFeII)-Co-14-N-III(CN)(5)](-) and [(LCoNCFeII)-Co-14S-N-III(CN)(5)](-) at room temperature enabled the lifetimes of their Co-II-Fe-III MMCT excited states to be determined as 0.8 and 1.3 ps, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iodine-doped (I-doped) mesoporous titania with a bicrystalline (anatase and rutile) framework was synthesized by a two-step template hydrothermal synthesis route. I-doped titania with anatase structure was also synthesized without the use of a block copolymer as a template. The resultant titania samples were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared, nitrogen adsorption, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible absorption spectroscopy. Both I-doped titania samples, with and without template, show much better photocatalytic activity than commercial P25 titania in the photodegradation of methylene blue under the irradiation of visible light (> 420 nm) and UV-visible light. Furthermore, I-doped mesoporous titania with a bicrystalline framework exhibits better activity than I-doped titania with anatase structure. The effect of rutile phase in titania on the adsorptive capacity of water and surface hydroxyl, and photocatalytic activity was investigated in detail. The excellent performance of I-doped mesoporous titania under both visible light and UV-visible light can be attributed to the combined effects of bicrystalline framework, high crystallinity, large surface area, mesoporous structure, and high visible light absorption induced by I-doping.