64 resultados para Viscosity Solutions
em University of Queensland eSpace - Australia
Resumo:
Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
We investigate the dynamics of the capillary thinning and break-up process for low viscosity elastic fluids such as dilute polymer solutions. Standard measurements of the evolution of the midpoint diameter of the necking fluid filament are augmented by high speed digital video images of the break up dynamics. We show that the successful operation of a capillary thinning device is governed by three important time scales (which characterize the relative importance of inertial, viscous and elastic processes), and also by two important length scales (which specify the initial sample size and the total stretch imposed on the sample). By optimizing the ranges of these geometric parameters, we are able to measure characteristic time scales for tensile stress growth as small as 1 millisecond for a number of model dilute and semi-dilute solutions of polyethylene oxide (PEO) in water and glycerol. If the final aspect ratio of the sample is too small, or the total axial stretch is too great, measurements are limited, respectively, by inertial oscillations of the liquid bridge or by the development of the well-known beads-on-a-string morphology which disrupt the formation of a uniform necking filament. By considering the magnitudes of the natural time scales associated with viscous flow, elastic stress growth and inertial oscillations it is possible to construct an operability diagram characterizing successful operation of a capillary break-up extensional rheometer. For Newtonian fluids, viscosities greater than approximately 70 mPas are required; however for dilute solutions of high molecular weight polymer, the minimum Viscosity is substantially lower due to the additional elastic stresses arising from molecular extension. For PEO of molecular weight 2.10(6) g/mol, it is possible to measure relaxation times of order 1 ms in dilute polymer solutions with zero-shear-rate viscosities on the order of 2-10 mPas.
The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries
Resumo:
The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics
Resumo:
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case.
Resumo:
We investigate the effect of the coefficient of the critical nonlinearity for the Neumann problem on the existence of least energy solutions. As a by-product we establish a Sobolev inequality with interior norm.
Resumo:
We give conditions on f involving pairs of lower and upper solutions which lead to the existence of at least three solutions of the two point boundary value problem y" + f(x, y, y') = 0, x epsilon [0, 1], y(0) = 0 = y(1). In the special case f(x, y, y') = f(y) greater than or equal to 0 we give growth conditions on f and apply our general result to show the existence of three positive solutions. We give an example showing this latter result is sharp. Our results extend those of Avery and of Lakshmikantham et al.
Resumo:
We are concerned with determining values of, for which there exist nodal solutions of the boundary value problems u" + ra(t) f(u) = 0, 0 < t < 1, u(O) = u(1) = 0. The proof of our main result is based upon bifurcation techniques.
Resumo:
In this paper we extend the guiding function approach to show that there are periodic or bounded solutions for first order systems of ordinary differential equations of the form x1 =f(t,x), a.e. epsilon[a,b], where f satisfies the Caratheodory conditions. Our results generalize recent ones of Mawhin and Ward.
Resumo:
Simple techniques are presented for rearrangement of an infinite series in a systematic way such that the convergence of the resulting expression is accelerated. These procedures also allow calculation of required boundary derivatives. Several examples of conduction and diffusion-reaction problems illustrate the methods.
Resumo:
Transient response of a CSTR containing porous catalyst pellets is analyzed theoretically using a matched asymptotic expansion technique. This singular perturbation technique leads directly to the conditions under which the minima of reservoir concentration occur. The existence of the minima may be used to estimate some inherent parameters of the catalyst pellet.
Resumo:
Using a novel finite integral transform technique, the problem of diffusion and chemical reaction in a porous catalyst with general activity profile is investigated theoretically. Analytical expressions for the effectiveness factor are obtained for pth order and Michaelis-Menten kinetics. Perturbation methods are employed to provide useful asymptotic solutions for large or small values of Thiele modulus and Biot number.
Resumo:
Flexible transport services (FTS) have been of increasing interest in developed countries as a bridge between the use of personal car travel and fixed route transit services. This paper reports on findings from a recent study in Queensland Australia, which identified lessons from an international review and implications for Australia. Potential strategic directions, including a vision, mission, key result areas, strategies, and identified means of measuring performance are described. Evaluation criteria for assessing flexible transport proposals were developed, and approaches to identifying and assessing needs and demands outlined. The use of emerging technologies is also a key element of successful flexible transport services.
Resumo:
The artificial dissipation effects in some solutions obtained with a Navier-Stokes flow solver are demonstrated. The solvers were used to calculate the flow of an artificially dissipative fluid, which is a fluid having dissipative properties which arise entirely from the solution method itself. This was done by setting the viscosity and heat conduction coefficients in the Navier-Stokes solvers to zero everywhere inside the flow, while at the same time applying the usual no-slip and thermal conducting boundary conditions at solid boundaries. An artificially dissipative flow solution is found where the dissipation depends entirely on the solver itself. If the difference between the solutions obtained with the viscosity and thermal conductivity set to zero and their correct values is small, it is clear that the artificial dissipation is dominating and the solutions are unreliable.