17 resultados para Veterinary medicine--Arab countries--Early works to 1800
em University of Queensland eSpace - Australia
Resumo:
Objectives. This report analyzes cigarette smoking over 10 years in populations in the World Health Organization (WHO) MONICA Project (to monitor trends and determinants of cardiovascular disease). Methods. Over 300 000 randomly selected subjects aged 25 to 64 years participated in surveys conducted in geographically defined populations. Results. For men, smoking prevalence decreased by more than 5% in 16 of the 36 study populations, remained static in most others, but increased in Beijing. Where prevalence decreased, this was largely due to higher proportions of never smokers in the younger age groups rather than to smokers quitting. Among women, smoking prevalence increased by more than 5% in 6 populations and decreased by more than 5% in 9 populations. For women, smoking tended to increase in populations with low prevalence and decrease in populations with higher prevalence; for men, the reverse pattern was observed. Conclusions. These data illustrate the evolution of the smoking epidemic in populations and provide the basis for targeted public health interventions to support the WHO priority for tobacco control.
Resumo:
Chemotherapy is central to the control of many parasite infections of both medical and veterinary importance. However, control has been compromised by the emergence of drug resistance in several important parasite species. Such parasites cover a broad phylogenetic range and include protozoa, helminths and arthropods. In order to achieve effective parasite control in the future, the recognition and diagnosis of resistance will be crucial. This demand for early, accurate diagnosis of resistance to specific drugs in different parasite species can potentially be met by modern molecular techniques. This paper summarises the resistance status of a range of important parasites and reviews the available molecular techniques for resistance diagnosis. Opportunities for applying successes in some species to other species where resistance is less well understood are explored. The practical application of molecular techniques and the impact of the technology on improving parasite control are discussed. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Review date: Review period January 1992-December 2001. Final analysis July 2004-January 2005. Background and review context: There has been no rigorous systematic review of the outcomes of early exposure to clinical and community settings in medical education. Objectives of review: (1) Identify published empirical evidence of the effects of early experience in medical education, analyse it, and synthesize conclusions from it. (2) Identify the strengths and limitations of the research effort to date, and identify objectives for future research. Search strategy: Ovid search of. BEI, ERIC, Medline, CIATAHL and EMBASE Additional electronic searches of: Psychinfo, Timelit, EBM reviews, SIGLE, and the Cochrane databases. Hand-searches of: Medical Education, Medical Teacher, Academic Medicine, Teaching and Learning in Medicine, Advances in Health Sciences Education, Journal of Educational Psychology. Criteria: Definitions: Experience: Authentic (real as opposed to simulated) human contact in a social or clinical context that enhances learning of health, illness and/or disease, and the role of the health professional. Early: What would traditionally have been regarded as the preclinical phase, usually the first 2 years. Inclusions: All empirical studies (verifiable, observational data) of early experience in the basic education of health professionals, whatever their design or methodology, including papers not in English. Evidence from other health care professions that could be applied to medicine was included. Exclusions: Not empirical; not early; post-basic; simulated rather than 'authentic' experience. Data collection: Careful validation of selection processes. Coding by two reviewers onto an extensively modified version of the standard BEME coding sheet. Accumulation into an Access database. Secondary coding and synthesis of an interpretation. Headline results: A total of 73 studies met the selection criteria and yielded 277 educational outcomes; 116 of those outcomes (from 38 studies) were rated strong and important enough to include in a narrative synthesis of results; 76% of those outcomes were from descriptive studies and 24% from comparative studies. Early experience motivated and satisfied students of the health professions and helped them acclimatize to clinical environments, develop professionally, interact with patients with more confidence and less stress, develop self-reflection and appraisal skill, and develop a professional identity. It strengthened their learning and made it more real and relevant to clinical practice. It helped students learn about the structure and function of the healthcare system, and about preventive care and the role of health professionals. It supported the learning of both biomedical and behavioural/social sciences and helped students acquire communication and basic clinical skills. There were outcomes for beneficiaries other than students, including teachers, patients, populations, organizations and specialties. Early experience increased recruitment to primary care/rural medical practice, though mainly in US studies which introduced it for that specific purpose as part of a complex intervention. Conclusions: Early experience helps medical students socialize to their chosen profession. It. helps them acquire a range of subject matter and makes their learning more real and relevant. It has potential benefits for other stakeholders, notably teachers and patients. It can influence career choices.
Resumo:
In recent years, the phrase 'genomic medicine' has increasingly been used to describe a new development in medicine that holds great promise for human health. This new approach to health care uses the knowledge of an individual's genetic make-up to identify those that are at a higher risk of developing certain diseases and to intervene at an earlier stage to prevent these diseases. Identifying genes that are involved in disease aetiology will provide researchers with tools to develop better treatments and cures. A major role within this field is attributed to 'predictive genomic medicine', which proposes screening healthy individuals to identify those who carry alleles that increase their susceptibility to common diseases, such as cancers and heart disease. Physicians could then intervene even before the disease manifests and advise individuals with a higher genetic risk to change their behaviour - for instance, to exercise or to eat a healthier diet - or offer drugs or other medical treatment to reduce their chances of developing these diseases. These promises have fallen on fertile ground among politicians, health-care providers and the general public, particularly in light of the increasing costs of health care in developed societies. Various countries have established databases on the DNA and health information of whole populations as a first step towards genomic medicine. Biomedical research has also identified a large number of genes that could be used to predict someone's risk of developing a certain disorder. But it would be premature to assume that genomic medicine will soon become reality, as many problems remain to be solved. Our knowledge about most disease genes and their roles is far from sufficient to make reliable predictions about a patient’s risk of actually developing a disease. In addition, genomic medicine will create new political, social, ethical and economic challenges that will have to be addressed in the near future.
Resumo:
A range of topical products are used in veterinary medicine. The efficacy of many of these products has been enhanced by the addition of penetration enhancers. Evolution has led to not only a highly specialized skin in animals and humans, but also one whose anatomical structure and skin permeability differ between the various species. The skin provides an excellent barrier against the ingress of environmental contaminants, toxins, and microorganisms while performing a homeostatic role to permit terrestrial life. Over the past few years, major advances have been made in the field of transdermal drug delivery. An increasing number of drugs are being added to the list of therapeutic agents that can be delivered via the skin to the systemic circulation where clinically effective concentrations are reached. The therapeutic benefits of topically applied veterinary products is achieved in spite of the inherent protective functions of the stratum corneum (SQ, one of which is to exclude foreign substances from entering the body. Much of the recent success in this field is attributable to the rapidly expanding knowledge of the SC barrier structure and function. The bilayer domains of the intercellular lipid matrices within the SC form an excellent penetration barrier, which must be breached if poorly penetrating drugs are to be administered at an appropriate rate. One generalized approach to overcoming the barrier properties of the skin for drugs and biomolecules is the incorporation of suitable vehicles or other chemical compounds into a transdermal delivery system. Indeed, the incorporation of such compounds has become more prevalent and is a growing trend in transdermal drug delivery. Substances that help promote drug diffusion through the SC and epidermis are referred to as penetration enhancers, accelerants, adjuvants, or sorption promoters. It is interesting to note that many pour-on and spot-on formulations used in veterinary medicine contain inert ingredients (e.g., alcohols, amides, ethers, glycols, and hydrocarbon oils) that will act as penetration enhancers. These substances have the potential to reduce the capacity for drug binding and interact with some components of the skin, thereby improving drug transport. However, their inclusion in veterinary products with a high-absorbed dose may result in adverse dermatological reactions (e.g., toxicological irritations) and concerns about tissue residues. These a-re important considerations when formulating a veterinary transdermal product when such compounds ate added, either intentionally or otherwise, for their penetration enhancement ability. (C) 2001 Elsevier Science B.V. All rights reserved.