76 resultados para Vesicular Trafficking
em University of Queensland eSpace - Australia
Resumo:
We review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord. Recent studies have suggested that two classes of homeodomain proteins are induced by threshold concentrations of Sonic hedgehog. Reciprocal inhibition between the two classes acts to convert the continuous gradient of Sonic hedgehog into defined domains of transcription factor expression. However, a number of aspects of ventral spinal cord patterning remain to be elucidated. Some issues currently under investigation involve temporal aspects of Shh-signalling, the role of other signals in ventral patterning and the characterisation of ventral interneurons. In this review, we discuss the current state of knowledge of these issues and present some preliminary studies aimed at furthering understanding of these processes in spinal cord patterning.
Resumo:
The regulation of hedgehog signaling by vesicular trafficking was exemplified by the finding that Rab23, a Rab-GTPase vesicular transport protein, is mutated in open brain mice. In this study, the localization of Rab23 was analyzed by light and immunoelectron microscopy after expression of wild-type (Rab23-GFP), constitutively active Rab23 (Rab23Q68L-GFP), and inactive Rab23 (Rab23S23N-GFP) in a range of mammalian cell types. Rab23-GFP and Rab23Q68L-GFP were predominantly localized to the plasma membrane but were also associated with intracellular vesicular structures, whereas Rab23S23N-GFP was predominantly cytosolic. Vesicular Rab23-GFP colocalized with Rab5Q79L and internalized transferrin-biotin, but not with a marker of the late endosome or the Golgi complex. To investigate Rab23 with respect to members of the hedgehog signaling pathway, Rab23-GFP was coexpressed with either patched or smoothened. Patched colocalized with intracellular Rab23-GFP but smoothened did not. Analysis of patched distribution by light and immunoelectron microscopy revealed it is primarily localized to endosomal elements, including transferrin receptor-positive early endosomes and putative endosome carrier vesicles and, to a lesser extent, with LBPA-positive late endosomes, but was excluded from the plasma membrane. Neither patched or smoothened distribution was altered in the presence of wild-type nor mutant Rab23-GFP, suggesting that despite the endosomal colocalization of Rab23 and patched, it is likely that Rab23 acts more distally in regulating hedgehog signaling.
Resumo:
Vesicular carriers for intracellular transport associate with unique sets of accessory molecules that dictate budding and docking on specific membrane domains. Although many of these accessory molecules are peripheral membrane proteins, in most cases the targeting sequences responsible for their membrane recruitment have yet to be identified. We have previously defined a novel Golgi targeting domain (GRIP) shared by a family of coiled-coil peripheral membrane Golgi proteins implicated in membrane trafficking. We show here that the docking site for the GRIP motif of p230 is a specific domain of Golgi. membranes. By immunoelectron microscopy of HeLa cells stably expressing a green fluorescent protein (GFP)-p230(GRIP) fusion protein, we show binding specifically to a subset of membranes of the trans-Golgi network (TGN). Real-time imaging of live HeLa cells revealed that the GFP-p230(GRIP) was associated with highly dynamic tubular extensions of the TGN, which have the appearance and behaviour of transport carriers. To further define the nature of the GRIP membrane binding site, in vitro budding assays were performed using purified rat liver Golgi membranes and cytosol from GFP-p230(GRIP) transfected cells. Analysis of Golgi-derived vesicles by sucrose gradient fractionation demonstrated that GFP-p230(GRIP) binds to a specific population of vesicles distinct from those labelled for beta -COP or gamma -adaptin. The GFP-p230(GRIP) fusion protein is recruited to the same vesicle population as full-length p230, demonstrating that the GRIP domain is solely proficient as a targeting signal for membrane binding of the native molecule. Therefore, p230 GRIP is a targeting signal for recruitment to a highly selective membrane attachment site on a specific population of trans-Golgi network tubulovesicular carriers.
Resumo:
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
Resumo:
Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr and tat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelled gag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently as vpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.
Resumo:
The presence of vesicular-arbuscular mycorrhizal (VAM) fungi in long-term cane-growing fields associated with yield decline led to the supposition that VAM fungi may be responsible for the poor yields. A glasshouse trial was established to test the effectiveness of a species of VAM fungi, Glomus clarum, extracted from one of these North Queensland fields on the growth of sugarcane (Saccharum interspecific hybrid), maize (Zea mays), and soybean (Glycine max) for 6 phosphorus (P) rates (0, 2.7, 8.2, 25, 74, 222 mg/kg). For maize and soybean plants that received VAM (+ VAM), root colonisation was associated with enhanced P uptake, improved dry weight (DW) production, and higher index tissue-P concentrations than those without VAM (-VAM). By comparing DW responses of maize and soybean for different P rates, savings in fertiliser P of up to 160 and 213 kg/ha, respectively, were realised. Sugarcane plants were generally less responsive. Apart from a 30% DW increase with VAM when 2.7 mg P/kg was added, DW of +VAM plants was equivalent to, or worse than in the case of 222 mg P/kg, DW of -VAM plants. For all 3 host species, colonisation was least at the highest P application, presumably from excessive P within the plant tissue. Critical P concentrations for the 3 host species were below those reported elsewhere, and for soybean and sugarcane, the critical concentration for +VAM plants was lower than that of -VAM plants. There are 3 implications that arise from this study. First, VAM fungi present in cane-growing soils can promote the growth of maize and soybean, which are potential rotation crops, over a range of P levels. Second, the mycorrhizal strain taken from this site did not generally contribute to a yield decline in sugarcane plants. Third, application of P fertiliser is not necessary for sugarcane when acid-extractable P is
Resumo:
Drosophila slit is a secreted protein involved in midline patterning. Three vertebrate orthologs of the fly slit gene, Slit1, 2, and 3, have been isolated. Each displays overlapping, but distinct, patterns of expression in the developing vertebrate central nervous system, implying conservation of function. However, vertebrate Slit genes are also expressed in nonneuronal tissues where their cellular locations and functions are unknown. In this study, we characterized the cellular distribution and processing of mammalian Slit3 gene product, the least evolutionarily conserved of the vertebrate Slit genes, in kidney epithelial cells, using both cellular fractionation and immunolabeling. Slit3, but not Slit2, was predominantly localized within the mitochondria. This localization was confirmed using immunoelectron microscopy in cell lines and in mouse kidney proximal tubule cells. In confluent epithelial monolayers, Slit3 was also transported to the cell surface. However, we found no evidence of Slit3 proteolytic processing similar to that seen for Slit2. We demonstrated that Slit3 contains an NH2-terminal mitochondrial localization signal that can direct a reporter green fluorescent protein to the mitochondria. The equivalent region from Slit1 cannot elicit mitochondrial targeting. We conclude that Slit3 protein is targeted to and localized at two distinct sites within epithelial cells: the mitochondria, and then, in more confluent cells, the cell surface. Targeting to both locations is driven by specific NH2-terminal sequences. This is the first examination of Slit protein localization in nonneuronal cells, and this study implies that Slit3 has potentially unique functions not shared by other Slit proteins.
Resumo:
Activated monocytes and macrophages secrete the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) TNF-alpha is produced as a 26 kd transmembrane protein that is cleaved to release a 17 kd soluble protein. TNF-alpha in both forms is biologically active. The intracellular trafficking of membrane-associated TNF-alpha in lipopolysaccharide-activated mouse macrophages was assessed after treatment with the metalloprotease inhibitor BB-3103, which prevents the cleavage of pro-TNF-alpha. Immunoprecipitation and immunofluorescence studies showed sustained expression of cell-associated TNF-alpha in the presence of the inhibitor. Cell immunoreactivity and surface biotinylation revealed that uncleaved TNF-alpha accumulated on the cell surface and was endocytosed, appearing in intracellular vesicles. Perturbation of post-Golgi traffic blocked the surface expression of 26 kd TNF-alpha. Tracking a bolus of TNF-alpha over time in cycloheximide-treated cells confirmed that uncleaved TNF-alpha is first transported to the cell surface and subsequently endocytosed. Vesicular structures immunoreactive for TNF-alpha were identified as endosomes by double labeling. The secretory and membrane-associated endocytic trafficking of TNF-alpha provides a mechanism for modulating the quantity of biologically active 26 kd TNF-alpha expressed on macrophages, allowing regulation of paracrine and autocrine responses.
Resumo:
The plasma membrane of differentiated skeletal muscle fibers comprises the sarcolemma, the transverse (T) tubule network, and the neuromuscular and muscle-tendon junctions. We analyzed the organization of these domains in relation to defined surface markers, beta -dystroglycan, dystrophin, and caveolin-3, These markers were shown to exhibit highly organized arrays along the length of the fiber. Caveolin-3 and beta -dystroglycan/dystrophin showed distinct, but to some extent overlapping, labeling patterns and both markers left transverse tubule openings clear. This labeling pattern revealed microdomains over the entire plasma membrane with the exception of the neuromuscular and muscle-tendon junctions which formed distinct demarcated macrodomains. Our results suggest that the entire plasma membrane of mature muscle comprises a mosaic of T tubule domains together with sareolemmal caveolae and beta -dystroglycan domains. The domains identified with these markers were examined with respect to targeting of viral proteins and other expressed domain-specific markers, We found that each marker protein was targeted to distinct microdomains, The macrodomains were intensely labeled with all our markers. Replacing the cytoplasmic tail of the vesicular stomatitis virus glycoprotein with that of CD4 resulted in retargeting from one domain to another. The domain-specific protein distribution at the muscle cell surface may be generated by targeting pathways requiring specific sorting information but this trafficking is different from the conventional apical-basolateral division. (C) 2001 Academic Press.
Resumo:
Delivery of endocytosed macromolecules to lysosomes occurs by means of direct fusion of late endosomes with lysosomes. This has been formally demonstrated in a cell-free content mixing assay using late endosomes and lysosomes from rat liver. There is evidence from electron microscopy Studies that the same process occurs in intact cells. The fusion process results in the formation of hybrid organelles from which lysosomes are reformed. The discovery of the hybrid organelle has opened up three areas of investigation: (i) the mechanism of direct fusion of late endosomes and lysosomes, (ii) the mechanism of re-formation of lysosomes from the hybrid organelle, and (iii) the function of the hybrid organelle. Fusion has analogies with homotypic vacuole fusion in yeast. It requires syntaxin 7 as part of the functional trans-SNARE [SNAP receptor, where SNAP is soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein] complex and the release of lumenal calcium to achieve membrane fusion. Reformation of lysosomes from the hybrid organelle occurs by a maturation process involving condensation of lumenal content and probably removal of some membrane proteins by vesicular traffic. Lysosomes may thus be regarded as a type of secretory granule, storing acid hydrolases in between fusion events with late endosomes. The hybrid organelle is predicted to function as a 'cell stomach', acting as a major site of hydrolysis of endocytosed macromolecules.
Resumo:
GLUT4 is a mammalian facilitative glucose transporter that is highly expressed in adipose tissue and striated muscle. In response to insulin, GLUT4 moves from intracellular storage areas to the plasma membrane, thus increasing cellular glucose uptake. While the verification of this 'translocation hypothesis' (Cushman SW. Wardzala LJ. J Biol Chem 1980;255: 4758-4762 and Suzuki K, Kono T. Proc Natl Acad Sci 1980;77: 2542-2545) has increased our understanding of insulin-regulated glucose transport, a number of fundamental questions remain unanswered. Where is GLUT4 stored within the basal cell? How does GLUT4 move to the cell surface and what mechanism does insulin employ to accelerate this process) Ultimately we require a convergence of trafficking studies with research in signal transduction. However, despite more than 30 years of intensive research we have still not reached this point. The problem is complex, involving at least two separate signal transduction pathways which feed into what appears to be a very dynamic sorting process. Below we discuss some of these complexities and highlight new data that are bringing us closer to the resolution of these questions.
Resumo:
Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.