6 resultados para Vertebrates Evolution

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new species of Gyracanthides from the mid-Visean Ducabrook Formation of Middle Paddock site, near Springsure in the Drummond Basin, central Queensland, is based on isolated three-dimensionally preserved elements. The specimens comprise paired and unpaired spines and pectoral girdle elements, procoracoids and scapulocoracoids, and include growth series. The morphology, especially of the shoulder girdle bones and the form and tubercular ornamentation of the paired fin spines, is used to distinguish the new taxon. These characters also help differentiate the numerous described gyracanthid species. Aspects of palaeobiology including possible sexual dimorphism are explored. A hypothetical reconstruction of the fish is based on our interpretation of the articulation of isolated elements combined with examination of wear patterns on fin spines. Gyracanthides hawkinsi sp. nov. is compared with other Australian taxa as well as with gyracanthids from North America, Europe, Russia, Iran, Africa and Antarctica, some of which are tentatively reassigned here to the Gondwanan genus Gyracanthides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular investigation of the origin of colour vision has discovered five visual pigment (opsin) genes, all of which are expressed in an agnathan (jawless) fish, the lamprey Geotria australis. Lampreys are extant representatives of an ancient group of vertebrates whose origins are thought to date back to at least the early Cambrian, approximately 540 million years ago [1.]. Phylogenetic analysis has identified the visual pigment opsin genes of G. australis as orthologues of the major classes of vertebrate opsin genes. Therefore, multiple opsin genes must have originated very early in vertebrate evolution, prior to the separation of the jawed and jawless vertebrate lineages, and thereby provided the genetic basis for colour vision in all vertebrate species. The southern hemisphere lamprey Geotria australis (Figure 1A,B) possesses a predominantly cone-based visual system designed for photopic (bright light) vision [2. S.P. Collin, I.C. Potter and C.R. Braekevelt, The ocular morphology of the southern hemisphere lamprey Geotria australis Gray, with special reference to optical specializations and the characterisation and phylogeny of photoreceptor types. Brain Behav. Evol. 54 (1999), pp. 96–111.2. and 3.]. Previous work identified multiple cone types suggesting that the potential for colour vision may have been present in the earliest members of this group. In order to trace the molecular evolution and origins of vertebrate colour vision, we have examined the genetic complement of visual pigment opsins in G. australis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the great challenges in biology is to understand how particular complex morphological and physiological characters originated in specific evolutionary lineages. In this article, we address the origin of the vertebrate hypothalamic-pituitary-peripheral gland (H-P-PG) endocrine system, a complex network of specialized tissues, ligands and receptors. Analysis of metazoan nucleotide and protein sequences reveals a patchwork pattern of H-P-PG gene conservation between vertebrates and closely related invertebrates (ascidians). This is consistent with a model of how the vertebrate H-P-PG endocrine system could have emerged in relatively few steps by gene family expansion and by regulatory and structural modifications to genes that are present in a chordate ancestor. Some of these changes might have resulted in new connections between metabolic or signaling pathways, such as the bridging of 'synthesis islands' to form an efficient system for steroid hormone synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a general test of the energetic equivalence rule, we examined macroecological relationships among abundance, density and host body mass in a comparative analysis of the assemblages of trophically transmitted endoparasitic helminths of 131 species of vertebrate hosts. Both the numbers and total volume of parasites per gram of host decreased allometrically with host body mass, with slopes roughly consistent with those expected from the allometric relationship between host basal metabolic rate and body mass. From an evolutionary perspective, large body size may therefore allow hosts to escape from the deleterious effects of parasitism.