3 resultados para Vegetation Classification

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring vegetation structural parameters. The objective of this work was to evaluate Ikonos and Landsat-7 ETM+ imagery for mapping structural parameters and species composition of riparian vegetation in Australian tropical savannahs for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from Ikonos data were used for estimating leaf area index (R-2 = 0.13) and canopy percentage foliage cover (R-2 = 0.86). Pan-sharpened Ikonos data were used to map riparian species composition (overall accuracy = 55 percent) and riparian zone width (accuracy within +/- 3 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone health. The objective of this work was to determine if the structural attributes of savanna riparian zones in northern Australia can be detected from commercially available remotely sensed image data. Two QuickBird images and coincident field data covering sections of the Daly River and the South Alligator River - Barramundie Creek in the Northern Territory were used. Semi-variograms were calculated to determine the characteristic spatial scales of riparian zone features, both vegetative and landform. Interpretation of semi-variograms showed that structural dimensions of riparian environments could be detected and estimated from the QuickBird image data. The results also show that selecting the correct spatial resolution and spectral bands is essential to maximize the accuracy of mapping spatial characteristics of savanna riparian features. The distribution of foliage projective cover of riparian vegetation affected spectral reflectance variations in individual spectral bands differently. Pan-sharpened image data enabled small-scale information extraction (< 6 m) on riparian zone structural parameters. The semi-variogram analysis results provide the basis for an inversion approach using high spatial resolution satellite image data to map indicators of savanna riparian zone health.