11 resultados para Vascular changes
em University of Queensland eSpace - Australia
Resumo:
The Rho family GTPases are regulatory molecules that link surface receptors to organisation of the actin cytoskeleton and play major roles in fundamental cellular processes. In the vasculature Rho signalling pathways are intimately involved in the regulation of endothelial barrier function, inflammation and transendothelial leukocyte migration, platelet activation, thrombosis and oxidative stress, as well as smooth muscle contraction, migration, proliferation and differentiation, and are thus implicated in many of the changes associated with atherogenesis. Indeed, it is believed that many of the beneficial, non-lipid lowering effects of statins occur as a result of their ability to inhibit Rho protein activation. Conversely, the Rho proteins can have beneficial effects on the vasculature, including the promotion of endothelial repair and the maintenance of SMC differentiation. Further identification of the mechanisms by which these proteins and their effectors act in the vasculature should lead to therapies that specifically target only the adverse effects of Rho signalling. (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Changes in arterial distensibility have been widely used to identify the presence of cardiovascular abnormalities like hypertension. Pulse wave velocity (PWV) has shown to be related to arterial distensibility. However, the lack of suitable techniques to measure PWV nonintrusively has impeded its clinical usefulness. Pulse transit time (PTT) is a noninvasive technique derived from the principle of PWV. PTT has shown its capabilities in cardiovascular and cardiorespiratory studies in adults. However, no known study has been conducted to understand the suitability and utility of PTT to estimate PWV in children. Two computational methods to derive PWV from PTT values obtained from 23 normotensive Caucasian children (19 males, aged 5-12 years old) from their finger and toe were conducted. Furthermore, the effects of adopting different postures on the PWV derivations were investigated. Statistical analyses were performed in comparison with two previous PWV studies conducted on children. Results revealed that PWV derived from the upper limb correlated significantly (P
Resumo:
Weight reduction in clinical populations of severely obese children has been shown to have beneficial effects on blood pressure, but little is known about the effect of weight gain among children in the general population. This study compares the mean blood pressure at 14 years of age with the change in overweight status between ages 5 and 14. Information from 2794 children born in Brisbane, Australia, and who were followed up since birth and had body mass index (BMI) and blood pressure measurements at ages 5 and 14 were used. Systolic and diastolic blood pressure at age 14 was the main outcomes and different patterns of change in BMI from age 5 to 14 were the main exposure. Those who changed from being overweight at age 5 to having normal BMI at age 14 had similar mean blood pressures to those who had a normal BMI at both time points: age- and sex-adjusted mean difference in systolic blood pressure 1.54 ( - 0.38, 3.45) mm Hg and in diastolic blood pressure 0.43 ( - 0.95, 1.81) mm Hg. In contrast, those who were overweight at both ages or who had a normal BMI at age 5 and were overweight at age 14 had higher blood pressure at age 14 than those who had a normal BMI at both times. These effects were independent of a range of potential confounding factors. Our findings suggest that programs that successfully result in children changing from overweight to normal-BMI status for their age may have important beneficial effects on subsequent blood pressure.
Resumo:
The metabolic syndrome (MS) is associated with cardiovascular risk exceeding that expected from atherosclerotic risk factors, but the mechanism of this association is unclear. We sought to determine the effects of the MS on myocardial and vascular function and cardiorespiratory fitness in 393 subjects with significant risk factors but no cardiovascular disease and negative stress echocardiographic findings. Myocardial function was assessed by global strain rate, strain, and regional systolic velocity (s(m)) and diastolic velocity (e(m)) using tissue Doppler imaging. Arterial compliance was assessed using the pulse pressure method, involving simultaneous radial applanation tonometry and echocardiographic measurement of stroke volume. Exercise capacity was measured by expired gas analysis. Significant and incremental variations in left ventricular systolic (s(m), global strain, and strain rate) and diastolic (e(m)) function were found according to the number of components of MS (p <0.001). MS contributed to reduced systolic and diastolic function even in those without left ventricular hypertrophy (p <0.01). A similar dose-response association was present between the number of components of the MS and exercise capacity (p <0.001) and arterial compliance. The global strain rate and em were independent predictors of exercise capacity. In conclusion, subclinical left ventricular dysfunction corresponded to the degree of metabolic burden, and these myocardial changes were associated with reduced cardiorespiratory fitness.' Subjects with MS who also have subclinical myocardial abnormalities and reduced cardiorespiratory fitness may have a higher risk of cardiovascular disease events and heart failure. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to determine the effects of dietary antioxidant supplementation with a-tocopherol and a-lipoic acid on cyclosporine-induced alterations to erythrocyte and plasma redox balance, and cyclosporine-induced endothelial and smooth muscle dysfunction. Rats were randomly assigned to either control, antioxidant, cyclosporine or cyclosporine + antioxidant treatments. Cyclosporine A was administered for 10 days after an 8-week feeding period. Plasma was analyzed for alpha-tocopherol, total antioxidant capacity, malondialdehyde and creatinine. Erythrocytes were analyzed for glutathione, methemoglobin, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, alpha-tocopherol and malondialdehye. Vascular endothelial and smooth muscle function was determined in vitro. Antioxidant supplementation resulted in significant increases in erythrocyte a-tocopherol concentration and glutathione peroxidase activity in both of the antioxidant-supplemented groups. Cyclosporine administration caused significant decreases in glutathione concentration, methemoglobin concentration and superoxide dismutase activity. Antioxidant supplementation attenuated the cyclosporine-induced decrease in superoxide dismutase activity. Cyclosporine therapy impaired both endothelium-independent and -dependent relaxation of the thoracic aorta, and this was attenuated by antioxidant supplementation. In summary, dietary supplementation with alpha-tocopherol and alpha-lipoic acid attenuated the cyclosporine-induced decrease in erythrocyte superoxide dismutase activity and attenuated cyclosporine-induced vascular dysfunction.
Resumo:
Background: Cyclosporin A (CsA)-treated renal transplant recipients (RTR) exhibit relative hyperhomocystinemia and vascular dysfunction. Folate supplementation lowers homocysteine and has been shown to improve vascular function in healthy subjects and patients with coronary artery disease. The aim of this study was to assess the effects of 3 months of folate supplementation (5 mg/day) on vascular function and structure in RTR. Methods: A double-blind, placebo-controlled crossover study was conducted in 10 CsA-treated RTR. Vascular structure was measured as carotid artery intima media thickness (IMT) and function was assessed as changes in brachial artery diameter during reactive hyperemia (RE) and in response to glyceryl trinitrate (GTN). Function data were analyzed as absolute and percent change from baseline and area under the diameter/time curve. Blood samples were collected before and after supplementation and analyzed for total plasma homocysteine, folate, vitamin B-12 and asymmetric dimethyl arginine (ADMA) in addition to regular measures of hemoglobin, hematocrit, mean corpuscular volume (MCV) and serum creatinine. Results: Folate supplementation significantly increased plasma folate by 687% (p < 0.005) and decreased homocysteine by 37% (p < 0.05) with no changes (p > 0.05) in vitamin B 12 or ADMA. There were no significant (p > 0.05) changes in vascular structure or function during the placebo or the folate supplementation phases; IMT; placebo pre mean +/- SD, 0.52 +/- 0.12, post 0.50 +/- 0.11; folate pre 0.55 +/- 0.17, post 0.49 +/- 10.20 mm 5% change in brachial artery diameter (RH, placebo pre 10 +/- 8, post 6 +/- 5; folate pre 9 +/- 7, post 7 +/- 5; GTN, placebo pre 18 +/- 10, post 17 +/- 9, folate pre 16 +/- 9, post-supplementation 18 +/- 8). Conclusion: Three months of folate supplementation decreases plasma homocysteine but has no effect on endothelial function or carotid artery IMT in RTR.
Resumo:
1 Hypoxic pulmonary hypertension in rats (10% O-2, 4 weeks) is characterized by changes in pulmonary vascular structure and function. The effects of the angiotensin converting enzyme inhibitor perindopril (oral gavage, once daily for the 4 weeks of hypoxia) on these changes were examined. 2 Perindopril (30 mg kg(-1) d(-1)) caused an 18% reduction in pulmonary artery pressure in hypoxic rats. 3 Structural changes (remodelling) in hypoxic rats included increases in (i) critical closing pressure in isolated perfused lungs (remodelling of arteries (50 mu m 0.d.) and (ii) medial wall thickness of intralobar pulmonary arteries, assessed histologically (vessels 30-100 and 101-500 mu m o.d.). Perindopril 10 and 30 mg kg(-1) d(-1) attenuated remodelling in vessels less than or equal to 100 mu m (lungs and histology), 30 mg kg(-1) d(-1) was effective in vessels 101-500 mu m but neither dose prevented hypertrophy of main pulmonary artery. 3 mg kg(-1) d(-1) was without effect. 4 Perindopril (30 mg kg(-1) d(-1)) prevented the exaggerated hypoxic pulmonary vasoconstrictor response seen in perfused lungs from hypoxic rats but did not prevent any of the functional changes (i.e. the increased contractions to 5-HT, U46619 (thromboxane-mimetic) and K+ and diminished contractions to angiotensins I and II) seen in isolated intralobar or main pulmonary arteries. Acetylcholine responses were unaltered in hypoxic rats. 5 We conclude that, in hypoxic rats, altered pulmonary vascular function is largely independent of remodelling. Hence any drug that affects only remodelling is unlikely to restore pulmonary vascular function to normal and, like perindopril, may have only a modest effect on pulmonary artery pressure.