5 resultados para Van Inwagen, James W.

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subject of this study was a typical, if in some respects well qualified, U.S. ambassadorial appointee for his time, the early twentieth century: an attorney, judge, and politician who served competently in his one diplomatic assignment, in Berlin, before returning to private life.—Ed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prior in vivo studies supported the concept that Mallory bodies (MBs) are aggresomes of cytokeratins 8 and 18. However, to test this hypothesis an in vitro model is needed to study the dynamics of MB formation. Such a study is difficult because MBs have never been induced in tissue culture. Therefore, MBs were first induced in vivo in drug-primed mice and then primary cultures of hepatocytes from these mice were studied. Two approaches were utilized: 1. Primary cultures were transfected with plasmids containing the sequence for cytokeratin 18 (CK 18) tagged with green fluorescent protein (GFP). 2. Immunofluorescent staining was used to localize the ubiquitin-proteasome pathway components involved in MB-aggresome complex formation in primary hepatocyte cultures. The cells were double stained with a ubiquitin antibody and one of the following antibodies: CK 8, CK 18, tubulin, mutant ubiquitin (UBB+ 1), transglutaminase, phosphothreonine, and the 20S and 26S proteasome subunits P25 and Tbp7, respectively. In the first approach, fluorescence was observed in keratin filaments and MBs 48 h after the cells were transfected with the CK 18 GFP plasmid. Nascent cytokeratin 18 was preferentially concentrated in MBs. Less fluorescence was observed in the normal keratin filaments. This indicated that MBs continued to form in vitro. The immunofluorescent staining of the hepatocytes showed that CK 8 and 18, ubiquitin, mutant ubiquitin (UBB+ 1), P25, Tbp7, phosphothreonine, tubulin, and transglutaminase were all located at the border or the interior of the MB. These results support the concept that MBs are aggresomes of CK 8 and CK 18 and are a result of inhibition of the ubiquitin-proteasome pathway of protein degradation possibly caused by UBB+ 1. (C) 2002 Elsevier Science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In renal collecting ducts, a vasopressin-induced cAMP increase results in the phosphorylation of aquaporin-2 (AQP2) water channels at Ser-256 and its redistribution from intracellular vesicles to the apical membrane. Hormones that activate protein kinase C (PKC) proteins counteract this process. To determine the role of the putative kinase sites in the trafficking and hormonal regulation of human AQP2, three putative casein kinase II (Ser-148, Ser-229, Thr-244), one PKC (Ser-231), and one protein kinase A (Ser-256) site were altered to mimic a constitutively non-phosphorylated/phosphorylated state and were expressed in Madin-Darby canine kidney cells. Except for Ser-256 mutants, seven correctly folded AQP2 kinase mutants trafficked as wild-type AQP2 to the apical membrane via forskolin-sensitive intracellular vesicles. With or without forskolin, AQP2-Ser-256A was localized in intracellular vesicles, whereas AQP2-S256D was localized in the apical membrane. Phorbol 12-myristate 13-acetate-induced PKC activation following forskolin treatment resulted in vesicular distribution of all AQP2 kinase mutants, while all were still phosphorylated at Ser-256. Our data indicate that in collecting duct cells, AQP2 trafficking to vasopressin-sensitive vesicles is phosphorylation-independent, that phosphorylation of Ser-256 is necessary and sufficient for expression of AQP2 in the apical membrane, and that PMA-induced PKC-mediated endocytosis of AQP2 is independent of the AQP2 phosphorylation state.