3 resultados para VITRO DEGRADATION

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies-therm ally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 mu m. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Echinacea preparations are widely used herbal remedies for the prevention and treatment of colds. In this study we have investigated the metabolism by human liver microsomes of the alkylamide components from an Echinacea preparation as well as that of pure synthetic alkylamides. No significant degradation of alkylamides was evident in cytosolic fractions. Time and NADPH-dependent degradation of alkylamides was observed in microsomal fractions suggesting they are metabolised by cytochrome P450 (P450) enzymes in human liver. There was a difference in the susceptibility of 2-ene and 2,4-diene pure synthetic alkylamides to microsomal degradation with (2E)-N-isobutylundeca-2-ene-8,10-diynamide (1) metabolised to only a tenth the extent of (2E,4E,8Z,IOZ)-N-isobutyldodeca-2,4,8,10-tetracnamide (3) under identical incubation conditions. Markedly less degradation of 3 was evident in the mixture of alkylamides present in an ethanolic Echinacea extract, suggesting that metabolism by liver P450s was dependent both on their chemistry and the combination present in the incubation. Co-incubation of 1 with 3 at equimolar concentrations resulted in a significant decrease in the metabolism of 3 by liver microsomes. This inhibition by 1, which has a terminal alkyne moiety, was found to be time- and concentration-dependent, and due to a mechanism-based inactivation of the P450s. Alkylamide metabolites were detected and found to be the predicted epoxidation, hydroxylation and dealkylation products. These findings suggest that Echinacea may effect the P450-mediated metabolism of other concurrently ingested pharmaceuticals. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates the pro-inflammatory response to the thermoplastic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) through the analysis of cellular responses in vitro. The murine macrophage RAW264.7 cell line was cultured on solvent cast PHBV films, which was found to induce pro-inflammatory activity that required direct contact between the material and the macrophages. The identity of the pro-inflammatory stimulus was determined by culturing bone marrow-derived macrophages from bacterial lipopolysaccharide (LPS) hyporesponsive C3H/HeJ mice and CpG non-responsive TLR9-/- mice on PHBV. The lack of a pro-inflammatory response by the C3H/HeJ cells indicates that the pro-inflammatory agent present within PHBV is predominately LPS while the TLR9-/- macrophages confirmed that CpG-containing bacterial DNA is unlikely to contribute to the activity. A series of purification procedures was evaluated and one procedure was developed that utilized hydrogen peroxide treatment in solution. The optimized purification was found to substantially reduce the pro-inflammatory response to PHBV without adversely affecting either the molecular structure or molecular weight of the material thereby rendering it more amenable for use as a biomaterial in vivo. Crown Copyright (c) 2006 Published by Elsevier Ltd. All rights reserved.