13 resultados para VISUALIZATION
em University of Queensland eSpace - Australia
Resumo:
Flows of complex fluids need to be understood at both macroscopic and molecular scales, because it is the macroscopic response that controls the fluid behavior, but the molecular scale that ultimately gives rise to rheological and solid-state properties. Here the flow field of an entangled polymer melt through an extended contraction, typical of many polymer processes, is imaged optically and by small-angle neutron scattering. The dual-probe technique samples both the macroscopic stress field in the flow and the microscopic configuration of the polymer molecules at selected points. The results are compared with a recent tube model molecular theory of entangled melt flow that is able to calculate both the stress and the single-chain structure factor from first principles. The combined action of the three fundamental entangled processes of reptation, contour length fluctuation, and convective constraint release is essential to account quantitatively for the rich rheological behavior. The multiscale approach unearths a new feature: Orientation at the length scale of the entire chain decays considerably more slowly than at the smaller entanglement length.
Resumo:
We explore both the rheology and complex flow behavior of monodisperse polymer melts. Adequate quantities of monodisperse polymer were synthesized in order that both the materials rheology and microprocessing behavior could be established. In parallel, we employ a molecular theory for the polymer rheology that is suitable for comparison with experimental rheometric data and numerical simulation for microprocessing flows. The model is capable of matching both shear and extensional data with minimal parameter fitting. Experimental data for the processing behavior of monodisperse polymers are presented for the first time as flow birefringence and pressure difference data obtained using a Multipass Rheometer with an 11:1 constriction entry and exit flow. Matching of experimental processing data was obtained using the constitutive equation with the Lagrangian numerical solver, FLOWSOLVE. The results show the direct coupling between molecular constitutive response and macroscopic processing behavior, and differentiate flow effects that arise separately from orientation and stretch. (c) 2005 The Society of Rheology.
Resumo:
Multiresolution Triangular Mesh (MTM) models are widely used to improve the performance of large terrain visualization by replacing the original model with a simplified one. MTM models, which consist of both original and simplified data, are commonly stored in spatial database systems due to their size. The relatively slow access speed of disks makes data retrieval the bottleneck of such terrain visualization systems. Existing spatial access methods proposed to address this problem rely on main-memory MTM models, which leads to significant overhead during query processing. In this paper, we approach the problem from a new perspective and propose a novel MTM called direct mesh that is designed specifically for secondary storage. It supports available indexing methods natively and requires no modification to MTM structure. Experiment results, which are based on two real-world data sets, show an average performance improvement of 5-10 times over the existing methods.
Resumo:
For some physics students, the concept of a particle travelling faster than the speed of light holds endless fascination, and. Cerenkov radiation is a visible consequence of a charged particle travelling through a medium at locally superluminal velocities. The Heaviside-Feynman equations for calculating the magnetic and electric fields of a moving charge have been known for many decades, but it is only recently that the computing power to plot the fields of such a particle has become readily available for student use. This paper investigates and illustrates the calculation of Maxwell's D field in homogeneous isotropic media for arbitrary, including superluminal, constant velocity, and uses the results as a basis for discussing energy transfer in the electromagnetic field.
Resumo:
Terrain can be approximated by a triangular mesh consisting millions of 3D points. Multiresolution triangular mesh (MTM) structures are designed to support applications that use terrain data at variable levels of detail (LOD). Typically, an MTM adopts a tree structure where a parent node represents a lower-resolution approximation of its descendants. Given a region of interest (ROI) and a LOD, the process of retrieving the required terrain data from the database is to traverse the MTM tree from the root to reach all the nodes satisfying the ROI and LOD conditions. This process, while being commonly used for multiresolution terrain visualization, is inefficient as either a large number of sequential I/O operations or fetching a large amount of extraneous data is incurred. Various spatial indexes have been proposed in the past to address this problem, however level-by-level tree traversal remains a common practice in order to obtain topological information among the retrieved terrain data. A new MTM data structure called direct mesh is proposed. We demonstrate that with direct mesh the amount of data retrieval can be substantially reduced. Comparing with existing MTM indexing methods, a significant performance improvement has been observed for real-life terrain data.