10 resultados para VFA

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of enhanced biological phosphorus removal (ESPR) systems is directly affected by the competition of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigated the short-term effects of carbon source on PAO and GAO performance. The tests were designed to clearly determine the impact of volatile fatty acid (VFA) composition on the performance of two types of biomass, one enriched for PAOs and the other for GAOs. The two populations were enriched in separate reactors using identical operating conditions and very similar influent compositions with acetate as the sole carbon source. The only difference was that a very tow level of phosphorus was present in the influent to the GAO reactor. The abundance of PAOs and GAOs was quantified using fluorescence in-situ hybridisation. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to utilise different carbon substrates. While both are able to take up acetate rapidly and completely, the GAOs are far slower at consuming propionate than the PAOs during short-term substrate changes. This provides a potentially highly valuable avenue to influence the competition between PAOs and GAOs. Other VFAs studied seem to be less usable in the short term by both PAOs and GAOs; as indicated by their much lower uptake rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis,' a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA. A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. (C) 2004 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Isolation and characterization of Streptococcus bovis from the dromedary camel and Rusa deer. Methods and Results: Bacteria were isolated from the rumen contents of four camels and two deer fed lucerne hay by culturing on the semi-selective medium MRS agar. Based on Gram morphology and RFLP analysis seven isolates, MPR1, MPR2, MPR3, MPR4, MPR5, RD09 and RD11 were selected and putatively identified as Streptococcus. The identity of these isolates was later confirmed by comparative DNA sequence analysis of the 16S rRNA gene with the homologous sequence from S. bovis strains, JB1, C14b1, NCFB2476, SbR1, SbR7 and Sb5, from cattle and sheep, and the Streptococcus equinus strain NCD01037T. The percentage similarity amongst all strains was >99%, confirming the identification of the camel isolates as S. bovis. The strains were further characterized by their ability to utilize a range of carbohydrates, the production of volatile fatty acids (VFA) and lactate and the determination of the doubling time in basal medium 10 supplemented with glucose. All the isolates produced L-lactate as a major fermentation end product, while four of five camel isolates produced VFA. The range of carbohydrates utilized by all the strains tested, including those from cattle and sheep were identical, except that all camel isolates and the deer isolate RD11 were additionally able to utilize arabinose. Conclusions: Streptococcus bovis was successfully isolated from the rumen of camels and deer, and shown by molecular and biochemical characterization to be almost identical to S. bovis isolates from cattle and sheep. Significance and Impact of the Study: Streptococcus bovis is considered a key lactic acid producing bacterium from the gastrointestinal tract of ruminants, and has been implicated as a causative agent of lactic acidosis. This study is the first report of the isolation and characterization of S. bovis from the dromedary camel and Rusa deer, and suggests a major contributive role of this bacterium to fermentative acidosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of acetate and propionate on the performance of a recently proposed and characterized photosynthetic biological sulfide removal system have been investigated with a view to predicting this concept's suitability for removing sulfide from wastewater undergoing or having undergone anaerobic treatment. The concept relies on substratum-irradiated biofilms dominated by green sulfur bacteria (GSB), which are supplied with radiant energy in the band 720 - 780 nm. A model reactor was fed for 7 months with a synthetic wastewater free of volatile fatty acids (VFAs), after which time intermittent dosing of the wastewater with acetate or propionate was begun. Such dosing suppressed the areal net sulfide removal rate by similar to50%, and caused the principal net product of sulfide removal to switch from sulfate to elemental-S. Similarly suppressed values of this rate were observed when the wastewater was dosed continuously with acetate, and this rate was not significantly affected by changes in the concentration of ammonia-N in the feed. The main net product of sulfide removal was again elemental-S, which was scarcely released into the liquid, however. Sulfate reduction and sulfur reduction were observed when the light supply was interrupted and were inferred to be occurring within the irradiated biofilm. A preexisting conceptual model of the biofilm was augmented with both of these reductive processes, and this augmented model was shown to account for most of the observed effects of VFA dosing. The implications of these findings for the practicality of the technology are considered. (C) 2004 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In enhanced biological phosphorus removal (EBPR) processes, glycogen-accumulating organisms (GAOs) may compete with polyphosphate-accumulating organisms (PAOs) for the often-limited carbon substrates, potentially resulting in disturbances to phosphorus removal. A detailed investigation of the effect of pH on the competition between PAOs and GAOs is reported in this study. The results show that a high external pH (similar to 8) provided PAOs with an advantage over GAOs in EBPR systems. The phosphorus removal performance improved due to a population shift favouring PAOs over GAOs, which was shown through both chemical and microbiological methods. Two lab-scale reactors fed with propionate as the carbon source were subjected to an increase in pH from 7 to 8. The phosphorus removal and PAO population (as measured by quantitative fluorescence in situ hybridisation analysis of Candidatus Accumulibacter phosphatis) increased in each system, where the PAOs appeared to out-compete a group of Alphaproteobacteria GAOs. A considerable improvement in the P removal was also observed in an acetate fed reactor, where the GAO population (primarily Candidatus Competibacter phosphatis) decreased substantially after a similar increase in the pH. The results from this study suggest that pH could be used as a control parameter to reduce the undesirable proliferation of GAOs and improve phosphorus removal in EBPR systems. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced biological phosphorus removal (EBPR) performance is directly affected by the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigates the effects of carbon source on PAO and GAO metabolism. Enriched PAO and GAO cultures were tested with the two most commonly found volatile fatty acids (VFAs) in wastewater systems, acetate and propionate. Four sequencing batch reactors (SBRs) were operated under similar conditions and influent compositions with either acetate or propionate as the sole carbon source. The stimulus for selection of the PAO and GAO phenotypes was provided only through variation of the phosphorus concentration in the feed. The abundance of PAOs and GAOs was quantified using fluorescence in situ hybridisation (FISH). In the acetate fed PAO and GAO reactors, Candidatus Accumulibacter phosphatis (a known PAO) and Candidatus Competibacter phosphatis (a known GAO) were present in abundance. A novel GAO, likely belonging to the group of Alphaproteobacteria, was found to dominate the propionate fed GAO reactor. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to take up acetate and propionate. PAOs enriched with acetate as the sole carbon source were immediately able to take up propionate, likely at a similar rate as acetate. However, an enrichment of GAOs with acetate as the sole carbon source took up propionate at a much slower rate (only about 5% of the rate of acetate uptake on a COD basis) during a short-term switch in carbon source. A GAO enrichment with propionate as the sole carbon source took up acetate at a rate that was less than half of the propionate uptake rate on a COD basis. These results, along with literature reports showing that PAOs fed with propionate (also dominated by Accumulibacter) can immediately switch to acetate, suggesting that PAOs are more adaptable to changes in carbon source as compared to GAOs. This study suggests that the PAO and GAO competition could be influenced in favour of PAOs through the provision of propionate in the feed or even by regularly switching the dominant VFA species in the wastewater. Further study is necessary in order to provide greater support for these hypotheses. (c) 2005 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing evidence is emerging that the performance of enhanced biological phosphorus removal (EBPR) systems relies on not only the total amount but also the composition of volatile fatty acids (VFAs). Domestic wastewater often contains limited amounts of VFAs with acetic acid typically being the dominating species. Consequently, prefermenters are often employed to generate additional VFAs to meet the demand for carbon by EBPR and/or denitrification processes. Limited knowledge is currently available on the effects of operational conditions on the production rate and composition of VFAs in prefermenters. In this study, a series of controlled batch experiments were conducted with sludge from a full-scale prefermenter to determine the impact of solids concentration, pH and addition of molasses on prefermentation processes. It was found that an increase in solids concentration enhanced total VFA production with an increased propionic acid fraction. The optimal pH for prefermentation was in the range of 6-7 with significant productivity loss when pH was below 5.5. Molasses addition significantly increased the production of VFAs particularly the propionic acid. However, the fermentation rate was likely limited by the biological activity of the sludge rather than by the amount of molasses added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anaerobic digestion of lignocellulosic material is carried out effectively in many natural microbial ecosystems including the rumen. A rumen-enhanced anaerobic sequencing batch reactor was used to investigate cellulose degradation to give analysis of overall process stoichiometry and rates of hydrolysis. The reactor achieved VFA production rates of 207-236 mg COD/L/h at a loading rate of 10 g/L/d. Overloading of the reactor resulted in elevated production of propionic acid, and on occasion, the presence of succinic acid. With improvements in mixing and solids wasting, the anaerobic sequencing batch reactor system could enable full-scale application of the process for treatment of cellulosic waste material.