49 resultados para VASCULAR-TONE
em University of Queensland eSpace - Australia
Resumo:
Endothelial function plays a key role in the local regulation of vascular tone. Alterations in endothelial function may result in impaired release of endothelium-derived relaxing factors or increased release of endothelium-derived contracting factors. Heart failure may impair endothelial function by means of reduced synthesis and release of nitric oxide (NO) or by increased degradation of NO and increased production of endothelin-1. Endothelial dysfunction may worsen heart function by means of peripheral effects, causing increased afterload and central effects such as myocardial ischemia and inducible nitric oxide synthase (iNOS)-induced detrimental effects. Evidence from clinical studies has suggested that there is a correlation between decreased endothelial function and increasing severity of congestive heart failure (CHF). Treatments that improve heart function may also improve endothelial dysfunction. The relationship between endothelial dysfunction and heart failure may be masked by the stage of endothelial dysfunction, the location of vessels being tested, and the state of endothelial-dependent vasodilatation response.
Resumo:
Until recently, spironolactone was considered only as an antagonist at the aldosterone receptors of the epithelial cells of the kidney and was used clinically in the treatment of hyperaldosteronism and, occasionally, as a K+-sparing diuretic. The spironolactone renaissance started with the experimental finding that spironolactone reversed aldosterone-induced cardiac fibrosis by a cardiac action. Experimentally, spironolactone also has direct effects on blood vessels. Spironolactone reduces vascular fibrosis and injury, inhibits angiogenesis, reduces vascular tone and reduces portal hypertension. The rationale for the Randomized Aldactone Evaluation Study (RALES) of spironolactone in heart failure was that ‘aldosterone escape’ occurred through non-angiotensin II mechanisms. The RALES clinical trial was stopped early when it was shown that there was a 30% reduction in risk of death among the spironolactone patients. In RALES, spironolactone also reduced hospitalisation for worsening heart failure and improved the symptoms of heart failure. Other recent clinical trials have shown that spironolactone reduces cardiac and vascular collagen turnover, improves heart variability, reduces ventricular arrhythmias, improves endothelial dysfunction and dilates blood vessels in human heart failure and these effects probably all contribute to the increased survival in heart failure. Spironolactone may also be useful in the treatment of left ventricular hypertrophy, portal hypertension and cirrhosis. There have also been some recent small clinical trials of spironolactone as an anti-androgen showing potential in acne, hirsutism and precocious puberty.
Resumo:
Essential hypertension is a common disorder, associated with increased endothelin-l-mediated vasoconstrictor tone at rest. We hypothesized that increased vasoconstrictor activity of endothelin-1 might explain why the normal decrease in peripheral vascular resistance in response to exercise is attenuated in hypertensive patients. Therefore, we investigated the effect of endothelin A (ETA) receptor blockade on the vasodilator response to handgrip exercise. Forearm blood flow responses to handgrip exercise (15%, 30%, and 45% of maximum voluntary contraction) were assessed in hypertensive patients and matched normotensive subjects, before and after intra-arterial infusions of the ETA receptor antagonist BQ-123; a control dilator, hydralazine; and placebo (saline). Preinfusion (baseline) vasodilation in response to exercise was significantly attenuated at each workload in hypertensive patients compared with normotensive subjects. Intra-arterial infusions of hydralazine and saline did not increase the vasodilator response to exercise in either hypertensives or normotensives at any workload. The vasodilator response to exercise was markedly enhanced after BQ-123 at the 2 higher workloads in hypertensives (157 +/- 48%, P < 0.01; 203 &PLUSMN; 58%, P < 0.01) but not in normotensives. This suggests that the impaired vasodilator response to exercise in hypertensive patients is, at least in part, a functional limitation caused by endogenous ETA receptor-mediated vasoconstriction. Treatment with endothelin receptor antagonists may, therefore, increase exercise capacity in essential hypertension.
Resumo:
Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel Anguilla reinhardtii were examined by light and transmission electron microscopy. Interarterial anastomoses were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to anastomose with a secondary vessel running in parallel with the primary counterpart. In contrast to findings from other species, secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, with a single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these appeared more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it is anticipated that flow through secondary vessels to some extent is affected by the vascular tone of the primary vessel. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. No immunoreactivity was observed on primary or secondary arteries against neuropeptide Y or calcitonin gene-related peptide.
Resumo:
This study investigated the nature of vasodilator mechanisms in the dorsal aorta of the giant shovelnose ray, Rhinobatus typus. Anatomical techniques found no evidence for an endothelial nitric oxide synthase, but neural nitric oxide synthase was found to be present in the perivascular nerve fibres of the dorsal aorta and other arteries and veins using both NADPH-diaphorase staining and immunohistochemistry with a specific neural NOS antibody. Arteries and veins both contained large nNOS-positive nerve trunks from which smaller nNOS-positive bundles branched and formed a plexus in the vessel wall. Single, varicose nNOS-positive nerve fibres were present in both arteries and veins. Within the large bundles of both arteries and veins, groups of nNOS-positive cell bodies forming microganglia were observed. Double-labelling immunohistochemistry using an antibody to tyrosine hydroxylase showed that nearly all the NOS nerves were not sympathetic. Acetylcholine always caused constriction of isolated rings of the dorsal aorta and the nitric oxide donor, sodium nitroprusside, did not mediate any dilation. Addition of nicotine (3 x 10(-4) M) to preconstricted rings caused a vasodilation that was not affected by the nitric oxide synthase inhibitor, L-NNA (10(-4) M), nor the soluble guanylyl cyclase inhibitor, ODQ (10(-5) M). This nicotine-mediated vasodilation was, therefore, not due to the synthesis and release of NO. Disruption of the endothelium significantly reduced or eliminated the nicotine-mediated vasodilation. In addition. indomethacin (10(-5) M), an inhibitor of cyclooxygenases, significantly increased the time period to maximal dilation and reduced, but did not completely inhibit the nicotine-mediated vasodilation. These data support the hypothesis that a prostaglandin is released from the vascular endothelium of a batoid ray, as has been described previously in other groups of fishes. The function of the nitrergic innervation of the blood vessels is not known because nitric oxide does not appear to regulate vascular tone. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Objectives - Nitric oxide (NO) is critically important in the regulation of vascular tone and the inhibition of platelet aggregation. We have shown previously that patients with acute coronary syndromes (ACS) or stable angina pectoris have impaired platelet responses to NO donors when compared with normal subjects. We tested the hypotheses that platelet hyporesponsiveness to NO is a predictor of (1) cardiovascular readmission and/or death and (2) all-cause mortality in patients with ACS (unstable angina pectoris or non-Q-wave myocardial infarction). Methods and Results - Patients (n = 51) with ACS had evaluation of platelet aggregation within 24 hours of coronary care unit admission using impedance aggregometry. Patients were categorized as having normal (>= 32% inhibition of ADP-induced aggregation with the NO donor sodium nitroprusside; 10 mu mol/L; n = 18) or impaired (>= 32% inhibition of ADP-induced aggregation; n = 33) NO responses. We then compared the incidence of cardiovascular readmission and death during a median of 7 years of follow-up in these 2 groups. Using a Cox proportional hazards model adjusting for age, sex, index event, postdischarge medical treatment, revascularization status, left ventricular systolic dysfunction, concurrent disease states, and cardiac risk factors, impaired NO responsiveness was associated with an increased risk of the combination of cardiovascular readmission and/or death (relative risk, 2.7; 95% CI, 1.03 to 7.10; P = 0.041) and all-cause mortality (relative risk, 6.3; 95% CI, 1.09 to 36.7; P = 0.033). Conclusions - Impaired platelet NO responsiveness is a novel, independent predictor of increased mortality and cardiovascular morbidity in patients with high-risk ACS.
Resumo:
Introduction: The vasoconstricting peptide endothelin-1 (ET-1) binds two G-protein-coupled receptor subtypes, the Endothelin A (ETA) and Endothelin B (ETB) receptors. The ETB receptor subtype has been predominantly localised to the arterial and venous endothelial cells both in-vivo and in culture. Stimulation of ET-1 through this receptor subtype can modulate the expression of endothelial nitric oxide and accelerate endothelial cell wound healing. In comparison the ETA receptor is abundantly expressed in medial vascular smooth muscle cells and mediates the vasoconstrictor action of ET-1 and is thought to play a key role in angiogenesis. Aims: To determine the levels of ETA receptor expression and localisation in the internal mammary artery (IMA). Methods: Twenty-four IMA sections were examined from patients undergoing coronary artery bypass (CABG) surgery (5F; 19M; mean age 67 years). And 14 organ donor IMA specimens were used as controls (7M; 7F; mean age 45 years. The tissue was fixed in formalin and processed for histology. Immunohistochemistry was performed on cross-sections of the left distal IMA to assess the areas of ETA receptor staining. The percentage are of ETA receptor staining in the media was calculated using image analysis software connected to an optical microscope and semiquantitative assessment was used to grade staining intensity, that is, mild (+), moderate (++) and strong (+++). Results: ETA receptor staining was significantly elevated in the media of the CABG specimens compared with the donor controls (46.88+/11.52% Vs 18.58+/7.65%, P = .0001). Interestingly, the endothelium (++) of the IMA, as well as the small microvessels in the adventitia (+++) stained positive for ETA receptor expression. Without using a haematoxylin counterstain, the nuclei of the cell stained more intensely (+++) with respect to the cytoplasm in both the medial smooth muscle (++) and endothelial cells (++). Fibroblasts in the medial adventitia junction were also positive for ETA receptor expression (+++). Further, this receptor subtype was also strongly expressed by inflammatory cells (monocytes and macrophages). Conclusions: These results demonstrate that the ETA receptor expression is increased in the medial SMC layer of the CABG IMA specimens and also present in the endothelium, vasa vasorum, fibroblasts and inflammatory cell types. Thus it is possible that in addition to affecting vascular tone, ET-1 may play an important role in IMA remodelling.
Resumo:
In pulmonary hypertension, changes in pulmonary vascular structure and function contribute to the elevation in pulmonary artery pressure. The time-courses for changes in function, unlike structure, are not well characterised. Medial hypertrophy and neomuscularisation and reactivity to vasoactive agents were examined in parallel in main and intralobar pulmonary arteries and salt-perfused lungs from rats exposed to hypoxia (10% O-2) for 1 and 4 weeks (early and established pulmonary hypertension, respectively). After 1 week of hypoxia, in isolated main and intralobar arteries, contractions to 5-hydroxytryptamine and U46619 (thromboxane-mimetic) were increased whereas contractions to angiotensins I and II and relaxations to acetylcholine were reduced. These alterations varied quantitatively between main and intralobar arteries and, in many instances, regressed between 1 and 4 weeks. The alterations in reactivity did not necessarily link chronologically with alterations in structure. In perfused lungs, constrictor responses to acute alveolar hypoxia were unchanged after 1 week but were increased after 4 weeks, in conjunction with the neomuscularisation of distal alveolar arteries. The data suggest that in hypoxic pulmonary hypertension, the contribution of altered pulmonary vascular reactivity to the increase in pulmonary artery pressure may be particularly important in the early stages of the disease.
Resumo:
K+ Channels and Membrane Potential in Endothelial Cells. The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca2+ concentration ([Ca2+](i)). This rise in [Ca2+](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca2+ entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.
Resumo:
This study examined the test performance of distortion product otoacoustic emissions (DPOAEs) when used as a screening tool in the school setting. A total of 1003 children (mean age 6.2 years, SD = 0.4) were tested with pure-tone screening, tympanometry, and DPOAE assessment. Optimal DPOAE test performance was determined in comparison with pure-tone screening results using clinical decision analysis. The results showed hit rates of 0.86, 0.89, and 0.90, and false alarm rates of 0.52, 0.19, and 0.22 for criterion signal-to-noise ratio (SNR) values of 4, 5, and 11 dB at 1.1, 1.9, and 3.8 kHz respectively. DPOAE test performance was compromised at 1.1 kHz. In view of the different test performance characteristics across the frequencies, the use of a fixed SNR as a pass criterion for all frequencies in DPOAE assessments is not recommended. When compared to pure tone plus tympanometry results, the DPOAEs showed deterioration in test performance, suggesting that the use of DPOAEs alone might miss children with subtle middle ear dysfunction. However, when the results of a test protocol, which incorporates both DPOAEs and tympanometry, were used in comparison with the gold standard of pure-tone screening plus tympanometry, test performance was enhanced. In view of its high performance, the use of a protocol that includes both DPOAEs and tympanometry holds promise as a useful tool in the hearing screening of schoolchildren, including difficult-to-test children.
Resumo:
In this paper we take advantage of the segmental control afforded by full and partial Vietnamese reduplication on a constant carrier phrase to obtain acoustic evidence of assymetrical prominence relations (van der Hulst 2005), in support of a hypothesis that Vietnamese reduplications are phonetically right headed and that tone sandhi is a reduction phenomenon occurring on prosodically weak positions (Shih 2005). Acoustic parameters of syllable duration (onset, nucleus and coda), F0 range, F0 contour, vowel intensity, spectral tilt and vowel formant structure are analyzed to determine: (1) which syllable of the two (base or reduplicant) is more prominent and (2) how the tone sandhi forms differ from their full reduplicated counterparts. Comparison of full and partial reduplicant syllables in tone sandhi forms provide additional support for this analysis.
Resumo:
Plasma leaking from damaged retinal blood vessels can have a significant impact on the pathologies of the posterior segment of the eye. Inflammation in the eye and metabolic change resulting from diabetes mellitus causes vascular leakage with alteration of the phenotype of retinal pigment epithelial (RPE) cells and fibrocytes, resulting in changes in cell function. Phenotypically altered cells then significantly contribute to the pathogenesis of retinopathies by being incorporated into tractional membranes in the vitreous, where they secrete matrix molecules, such as fibronectin, and express altered cell surface antigens. We hypothesize that there is a direct relationship between the leaking of plasma and the proliferation and phenotypic change of RPE cells and fibroblasts, thus exacerbating the pathology of retinal disease. If the hypothesis is correct, control of vascular leakage becomes an important target of therapy in proliferative vitreoretinopathy.
Resumo:
The testing of a 30-mer dG-rich phosphorothioate oligodeoxynucleotide (LG4PS) for effects on the behaviour of vascular smooth muscle cells (VSMC) in vitro and in vivo is described. LG4PS at 0.3 mu M inhibited significantly the phenotype modulation of freshly isolated rabbit VSMC, and cell outgrowth from pig aortic explants was inhibited similar to 80% by 5 mu M LG4PS. The growth of proliferating rabbit and pig VSMC was inhibited similar to 70% by 0.3 mu M and 5 mu M LG4PS, respectively. Though less marked, the antiproliferative effects of LG4PS on human VSMC were comparable to those obtained with heparin. The cytotoxic effects of LG4PS on VSMC in vitro were low. Despite these promising results, adventitial application of 2-200 nmol LG4PS in pluronic gel failed to reduce vascular hyperplasia in balloon-injured rabbit carotid arteries, and the highest dose caused extensive mortality. (C) 1997 Academic Press Limited.
Resumo:
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.
Resumo:
Purpose: The aim of this study was to determine whether heparan sulfate proteoglycans (HSPGs) from the normal arterial wall inhibit neointimal formation after injury in vivo and smooth muscle cell (SMC) phenotype change and proliferation in vitro. Methods: Arterial HSPGs were extracted from rabbit aortae and separated by anion-exchange chromatography. The effect of HSPGs, applied in a periadventitial gel, on neointimal formation was assessed 14 days after balloon catheter injury of rabbit carotid arteries. Their effect on SMC phenotype and proliferation was measured by point-counting morphometry of the cytoplasmic volume fraction of myofilaments (Vvmyo) and H-3-thymidine incorporation in SMCs in culture. Results: Arterial HSPGs (680 mu g) reduced neointimal formation by 35% at 14 days after injury (P =.029), whereas 2000 mu g of the low-molecular-weight heparin Enoxaparin was ineffective. HSPGs at 34 mu g/mL maintained subconfluent primary cultured SMCs with the same high Vvmyo (52.1% +/- 13.8%) after 5 days in culture as did cells freshly isolated from the arterial wall (52.1% +/- 15.1%). In contrast, 100 mu g/mL Enoxaparin was ineffective in preventing phenotypic change over this time period (Vvmyo 38.9% +/- 14.6%, controls 35.9% +/- 12.8%). HSPGs also inhibited 3H-thymidine incorporation into primary cultured SMCs with an ID50 value of 0.4 mu g/mL compared with a value of 14 mu g/ml; for Enoxaparin (P