3 resultados para User preference

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pervasive computing applications must be engineered to provide unprecedented levels of flexibility in order to reconfigure and adapt in response to changes in computing resources and user requirements. To meet these challenges, appropriate software engineering abstractions and infrastructure are required as a platform on which to build adaptive applications. In this paper, we demonstrate the use of a disciplined, model-based approach to engineer a context-aware Session Initiation Protocol (SIP) based communication application. This disciplined approach builds on our previously developed conceptual models and infrastructural components, which enable the description, acquisition, management and exploitation of arbitrary types of context and user preference information to enable adaptation to context changes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other's preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more preferred content or customize the Web presentation to visitors via collaborative recommendation. In addition, it is helpful to identify the underlying relationships among Web users, items as well as latent tasks during Web mining period. In this paper, we propose a Web recommendation framework based on user profiling technique. In this approach, we employ Probabilistic Latent Semantic Analysis (PLSA) to model the co-occurrence activities and develop a modified k-means clustering algorithm to build user profiles as the representatives of usage patterns. Moreover, the hidden task model is derived by characterizing the meaningful latent factor space. With the discovered user profiles, we then choose the most matched profile, which possesses the closely similar preference to current user and make collaborative recommendation based on the corresponding page weights appeared in the selected user profile. The preliminary experimental results performed on real world data sets show that the proposed approach is capable of making recommendation accurately and efficiently.