5 resultados para Upstream
em University of Queensland eSpace - Australia
Resumo:
Upstream AUGs (uAUGs) and upstream open reading frames (uORFs) are common features of mRNAs that encode regulatory proteins and have been shown to profoundly influence translation of the main ORF. In this study, we employed a series of artificial 5'-untranslated regions (5'-UTRs) containing one or more uAUGs/uORFs to systematically assess translation initiation at the main AUG by leaky scanning and reinitiation mechanisms. Constructs containing either one or two uAUGs in varying contexts but without an in-frame stop codon upstream of the main AUG were used to analyse the leaky scanning mechanism. This analysis largely confirmed the ranking of different AUG contextual sequences that was determined previously by Kozak. In addition, this ranking was the same for both the first and second uAUGs, although the magnitude of initiation efficiency differed. Moreover, similar to10% of ribosomes exhibited leaky scanning at uAUGs in the most favourable context and initiated at a downstream AUG. A second group of constructs containing different numbers of uORFs, each with optimal uAUGs, were used to measure the capacity for reinitiation. We found significant levels of initiation at the main ORF even in constructs containing four uORFs, with nearly 10% of ribosomes capable of reinitiating five times. This study shows that for mRNAs containing multiple uORFs/uAUGs, ribosome reinitiation and leaky scanning are efficient mechanisms for initiation at their main AUGs.
Resumo:
Background: Approximately 40% of mammalian mRNA sequences contain AUG trinucleotides upstream of the main coding sequence, with a quarter of these AUGs demarcating open reading frames of 20 or more codons. In order to investigate whether these open reading frames may encode functional peptides, we have carried out a comparative genomic analysis of human and mouse mRNA 'untranslated regions' using sequences from the RefSeq mRNA sequence database. Results: We have identified over 200 upstream open reading frames which are strongly conserved between the human and mouse genomes. Consensus sequences associated with efficient initiation of translation are overrepresented at the AUG trinucleotides of these upstream open reading frames, while comparative analysis of their DNA and putative peptide sequences shows evidence of purifying selection. Conclusion: The occurrence of a large number of conserved upstream open reading frames, in association with features consistent with protein translation, strongly suggests evolutionary maintenance of the coding sequence and indicates probable functional expression of the peptides encoded within these upstream open reading frames.
Resumo:
The chicken ovalbumin upstream promoter-transcription factors ( COUP-TFs) are orphan members of the nuclear hormone receptor ( NR) superfamily. COUP-TFs are involved in organogenesis and neurogenesis. However, their role in skeletal muscle ( and other major mass tissues) and metabolism remains obscure. Skeletal muscle accounts for similar to 40% of total body mass and energy expenditure. Moreover, this peripheral tissue is a primary site of glucose and fatty acid utilization. We utilize small interfering RNA ( siRNA)-mediated attenuation of Coup-TfI and II ( mRNA and protein) in a skeletal muscle cell culture model to understand the regulatory role of Coup-Tfs in this energy demanding tissue. This targeted NR repression resulted in the significant attenuation of genes that regulate lipid mobilization and utilization ( including Ppar alpha, Fabp3, and Cpt-1). This was coupled to reduced fatty acid beta-oxidation. Additionally we observed significant attenuation of Ucp1, a gene involved in energy expenditure. Concordantly, we observed a 5-fold increase in ATP levels in cells with siRNA-mediated repression of Coup-TfI and II. Furthermore, the expression of classical liver X receptor ( LXR) target genes involved in reverse cholesterol transport ( Abca1 and Abcg1) were both significantly repressed. Moreover, we observed that repression of the Coup-Tfs ablated the activation of Abca1, and Abcg1 mRNA expression by the selective LXR agonist, T0901317. In concordance, Coup-Tf-siRNA-transfected cells were refractory to Lxr-mediated reduction of total intracellular cholesterol levels in contrast to the negative control cells. In agreement Lxr-mediated activation of the Abca1 promoter in Coup-Tf-siRNA cells was attenuated. Collectively, these data suggest a pivotal role for Coup-Tfs in the regulation of lipid utilization/cholesterol homeostasis in skeletal muscle cells and the modulation of Lxr-dependent gene regulation.