8 resultados para Ultrasound computed tomography
em University of Queensland eSpace - Australia
Resumo:
OBJECTIVES We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). BACKGROUND Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. METHODS Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, 75% of the wall thickness replaced by scar. RESULTS As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (50% were viable by SPECT. CONCLUSIONS Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
Left ventricular (LV) volumes have important prognostic implications in patients with chronic ischemic heart disease. We sought to examine the accuracy and reproducibility of real-time 3D echo (RT-3DE) compared to TI-201 single photon emission computed tomography (SPECT) and cardiac magnetic resonance imaging (MRI). Thirty (n = 30) patients (age 62±9 years, 23 men) with chronic ischemic heart disease underwent LV volume assessment with RT-3DE, SPECT, and MRI. Ano vel semi-automated border detection algorithmwas used by RT-3DE. End diastolic volumes (EDV) and end systolic volumes (ESV) measured by RT3DE and SPECT were compared to MRI as the standard of reference. RT-3DE and SPECT volumes showed excellent correlation with MRI (Table). Both RT- 3DE and SPECT underestimated LV volumes compared to MRI (ESV, SPECT 74±58 ml versus RT-3DE 95±48 ml versus MRI 96±54 ml); (EDV, SPECT 121±61 ml versus RT-3DE 169±61 ml versus MRI 179±56 ml). The degree of ESV underestimation with RT-3DE was not significant.
Resumo:
Angiography is usually performed as the preoperative road map for those requiring revascularization for lower extremity peripheral arterial disease (PAD). The alternative investigations are ultrasound, 3-D magnetic resonance angiography (3-D MRA) and computed tomography angiography. This pilot study aimed to assess whether 3-D MRA could replace the gold standard angiography in preoperative planning. Eight patients considered for aortoiliac or infrainguinal arterial bypass surgery were recruited. All underwent both imaging modalities within 7 days. A vascular surgeon and a radiologist each reported on the images from both the 3-D MRA and the angiography, with blinding to patient details and each others reports. Comparisons were made between the reports for the angiographic and the 3-D MRA images, and between the reports of the vascular surgeon and the radiologist. Compared to the gold standard angiogram, 3-D MRA had a sensitivity of 77% and specificity of 94% in detecting occlusion, and a sensitivity of 72% and specificity of 90% in differentiating high grade (> 50%) versus low grade (< 50%) stenoses. There was an overall concordance of 78% between the two investigations with a range of 62% in the peroneal artery to 94% in the aorta. 3-D MRA showed flow in 23% of cases where conventional angiography showed no flow. In the present pilot study, 3-D MRA had reasonable concordance with the gold standard angiography, depending on the level of the lesion. At times it showed vessel flow where occlusion was shown on conventional angiogram. 3-D MRA in peripheral vascular disease is challenging the gold standard, but is inconsistent at present.
Resumo:
Acute epiploic appendagitis is an uncommon cause of abdominal pain. It is caused by torsion of an epiploic appendage or spontaneous venous thrombosis of a draining appendageal vein.1 The diagnosis of this condition primarily relies on cross-sectional imaging and is made most often after computed tomography (CT). Clinically, it is most often mistaken for acute diverticulitis. Approximately 7.1% of patients investigated to exclude sigmoid diverticulitis have imaging findings of primary epiploic appendagitis.
Resumo:
Background: Despite the availability of expert surgeons and preoperative imaging investigations, some patients require reoperation for persistent or recurrent hyperparathyroidisms. Method: Fifty consecutive patients were reviewed. Results: There were 28 persistent cases (24 primary, 4 secondary) and 22 recurrent cases (15 primary, 7 secondary) and 98% had successful surgical treatment. Multigland disease was present in 24 of 39 (62%) of primary cases, 11 of 24 persistent and 13 of 15 recurrent (P < 0.02). Four patients in the recurrent primary group had multiple endocrine neoplasia type 1, whereas the other 20 primary patients had sporadic multigland disease. Multigland disease was present in all secondary cases and was a very important factor in this entire series of patients (70%). Regrowth of a remnant of a gland biopsied or partially resected at an earlier operation was the cause of recurrence in 12 of 15 primary and 2 of 7 secondary cases (P < 0.05). The site of missed glands in persistent disease was ectopic in 60%. Ectopic glands were found in the following sites: intrathyroidal 10 (8 inferior and 2 superior), intrathymic 9, posterior mediastinum 4, base of skull 2, carotid sheath 1 and supernumerary 5. Investigations to locate missing glands were positive in 28 of 43 sestamibi scans (65%), 14 of 34 ultrasound scans (41%), 10 of 24 computed tomography scans (42%) and 11 of 13 selective venous sampling tests (85%). Conclusion: Some persistent cases are unavoidable because of ectopic locations and some recurrences are inevitable because of multigland disease.