7 resultados para URETER
em University of Queensland eSpace - Australia
Resumo:
1 The smooth muscle relaxant responses to the mixed beta(3)-, putative beta(4)-adrenoceptor agonist, (-)-CGP 12177 in rat colon are partially resistant to blockade by the beta(3)-adrenoceptor antagonist SR59230A suggesting involvement of beta(3)- and putative beta(4)-adrenoceptors. We now investigated the function of the putative beta(4)-adrenoceptor and other beta-adrenoceptor subtypes in the colon, oesophagus and ureter of wild-type (WT) and beta(3)-adrenoceptor knockout (beta(3)KO) mice. 2 (-)-Noradrenaline and (-)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through beta(1)-and beta(3)-adrenoceptors to a similar extent and to a minor extent through beta(2)-adrenoceptors. In colon from beta(3)KO mice, (-)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through beta(1)-adrenoceptors. (-)-CGP 12177 relaxed colon from beta(3)KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (-)-noradrenaline and increase for (-)-CGP 12177 indicate compensatory increases in beta(1)- and putative beta(4)-adrenoceptor function in beta(3)KO mice. 3 In oesophagi precontracted with 1 mu M carbachol, (-)-noradrenaline caused relaxation mainly through beta(1)-and beta(3)-adrenoceptors. (-)-CGP 12177 (2 mu M) relaxed oesophagi from WT by 61.4+/-5.1% and beta(3)KO by 67.3+/-10.1% of the (-)-isoprenaline-evoked relaxation, consistent with mediation through putative beta(4)-adrenoceptors. 4 In ureter, (-)-CGP 12177 (2 mu M) reduced pacemaker activity by 31.1+/-2.3% in WT and 31.3+/-7.5% in beta(3)KO, consistent with mediation through putative beta(4)-adrenoceptors. 5 Relaxation of mouse colon and oesophagus by catecholamines are mediated through beta(1)- and beta(3)- adrenoceptors in WT. The putative beta(4)-adrenoceptor, which presumably is an atypical state of the beta(1)-adrenoceptor, mediates the effects of(-)-CGP 12177 in colon, oesophagus and ureter.
Resumo:
In many instances, kidney dysgenesis results as a secondary consequence to defects in the development of the ureter. Through the use of mouse genetics a number of genes associated with such malformations have been identified, however, the cause of many other abnormalities remain unknown. In order to identify novel genes involved in ureter development we compared gene expression in embryonic day (E) 12.5, E15.5 and postnatal day (P) 75 ureters using the Compugen mouse long oligo microarrays. A total of 248 genes were dynamically upregulated and 208 downregulated between E12.5 and P75. At E12.5, when the mouse ureter is comprised of a simple cuboidal epithelium surrounded by ureteric mesenchyme, genes previously reported to be expressed in the ureteric mesenchyme, foxC1 and foxC2 were upregulated. By E15.5 the epithelial layer develops into urothelium, impermeable to urine, and smooth muscle develops for the peristaltic movement of urine towards the bladder. The development of these two cell types coincided with the upregulation of UPIIIa, RAB27b and PPAR gamma reported to be expressed in the urothelium, and several muscle genes, Acta1, Tnnt2, Myocd, and Tpm2. In situ hybridization identified several novel genes with spatial expression within the smooth muscle, Acta1; ureteric mesenchyme and smooth muscle, Thbs2 and Co15a2; and urothelium, Kcnj8 and Adh1. This study marks the first known report defining global gene expression of the developing mouse ureter and will provide insight into the molecular mechanisms underlying kidney and lower urinary tract malformations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Human acetyl coenzyme A-dependent N-acetyltransferase (EC 2.3.1.5) (NAT) catalyzes the biotransformation of a number of arylamine and hydrazine compounds. NAT isozymes are encoded at 2 loci; one encodes NAT1, formerly known as the monomorphic form of the enzyme, while the other encodes the polymorphic NAT2, which is responsible for individual differences in the ability to acetylate certain compounds. Human epidemiological studies have suggested an association between the acetylator phenotype and particular cancers such as those of the bladder and colon. In the present study, NAT1- and NAT2-specific riboprobes were used in hybridization histochemistry studies to localize NAT1 and NAT2 mRNA sequences in formalin-fixed, paraffin-embedded human tissue sections. Expression of both NAT1 and NAT2 mRNA was observed in liver, gastrointestinal tract tissues (esophagus, stomach, small intestine, and colon), ureter, bladder, and lung. In extrahepatic tissues, NAT1 and NAT2 mRNA expression was localized to intestinal epithelial cells, urothelial cells, and the epithelial cells of the respiratory bronchioles. The observed heterogeneity of NAT1 and NAT2 mRNA expression between human tissue types may be of significance in assessing their contribution to known organ-specific toxicities of various arylamine drugs and carcinogens.
Resumo:
In both animal models and humans, the first and obligatory step in the activation of arylamines is N-hydroxylation. This pathway is primarily mediated by the phase-I enzymes CYP1A1, CYP1A2 and CYP4B1. In the presence of flavonoids such as alpha-naphthoflavone and flavone, both CYP3A4 and CYP3A5 have also been shown to play a minor role in the activation of food-derived heterocyclic amines. The further activation of N-hydroxyarylamines by phase-II metabolism can involve both N,O-acetylation and N,O-sulfonation catalyzed by N-acetyltransferases (NAT1 and NAT2) and sulfotransferases, respectively. Using an array of techniques, we have been unable to detect constitutive CYP1A expression in any segments of the human gastrointestinal tract. This is in contrast to the rabbit where CYP1A1 protein was readily detectable on immunoblots in microsomes prepared from the small intestine. In humans, CYP3A3/3A4 expression was detectable in the esophagus and all segments of the small intestine. Northern blot analysis of eleven human colons showed considerable heterogeneity in CYP3A mRNA between individuals, with the presence of two mRNA species in same subjects. Employing the technique of hybridization histochemistry (also known as in situ hybridization), CYP4B1 expression was observed in some human colons but not in the liver or the small intestine. Hybridization histochemistry studies have also demonstrated variable NAT1 and NAT2 expression in the human gastrointestinal tract. NAT1 and NAT2 mRNA expression was detected in the human liver, small intestine, colon, esophagus, bladder, ureter, stomach and lung. Using a general aryl sulfotransferase riboprobe (HAST1), we have demonstrated marked sulfotransferase expression in the human colon, small intestine, lung, stomach and liver. These studies demonstrate that considerable variability exists in the expression of enzymes involved in the activation of aromatic amines in human tissues. The significance of these results in relation to a role for heterocyclic amines in colon cancer is discussed.
Resumo:
Purpose: From the experience of a large combined series of transperitoneal. (TP) and retroperitoneal (RP) endoscopic complete and partial nephroureterectornies in children, we present a logical selective endoscopic approach to benign renal pathology. Materials and Methods: During a 5-year period 122 complete nephrectomies and nephroureterectomies (bilateral 2, invisible ectopic 8) and 63 partial nephroureterectomies for duplex (52 upper, 8 lower) or singleton polar disease (xanthogranulomatous pyelonephritis 1, cyst 2) were performed. Of the partial nephrectomies, ureterectomy, bladder repair and lower moiety reimplantation were performed in 8. Patient age ranged from 2.7 months to 14 years (mean 2.9 years). Preoperative weight ranged from 2.7 to 98 kg (mean 12.3). The position of the renal remnant, the presence or absence of a refluxing ureter and the need for ureterectomy were the major determining factors affecting choice of endoscopic approach. Results: A total of 179 (96.7%) procedures were successfully completed endoscopically. The 6 open conversions (3.2%) occurred early in our experience. The operating time reflected the complexity of the excision and lower urinary reconstruction (lateral and posterior RP 25 to 145 minutes [mean 921) TP with ureterocelectomy and bladder neck repair 105 to 355 minutes [mean 153]. Hospital stay for RP and simple TP was 1.5 days (mean 1 to 4) and for complicated TP 2 to 8 days (mean 3.5). Conclusions: We suggest a posterior retroperitoneal approach with isolated renal excision without extended ureterectomy. The lateral retroperitoneal approach allows complete ureterectomy as well as better exposure to horseshoe and pelvic kidneys and, therefore, avoids exposure to intraperitoneal. structures. Finally, the transperitoneal approach is recommended when complete moiety excision with lower urinary reconstruction is anticipated.
Resumo:
Background. A disintegrin and metalloproteinase with thrombospondin motifs 1, Adamts-1, is important for the development and function of the kidney. Mice lacking this protein present with renal lesions comprising enlarged calyces, and reduced cortex and medulla layers. Our current findings are consistent with the defect occurring due to a developmental dysgenesis. Methods. We generated Adamts-1 null mice, and further investigated their kidney phenotype in a time course study ranging from E18.5 to 12 months of age. Immunohistochemistry was used to assess the localization of type IV collagen, TGF-beta and F4/80-positive macrophages in the kidneys of Adcants-1 null mice compared to wild-type control animals. The expression of Adamts-1 mRNA was determined in metanephric kidney explants by in situ hybridization. Results. Adamts-1 null mice have a gross kidney defect. At day 18.5 of gestation, the Adcants-1 null kidney has a normal appearance but at birth when the kidney begins to function, the defect becomes evident. During development of the kidney Adamts-1 expression was specifically detected in the developing loops of Henle, as well as in the proximal and distal convoluted tubules. Expression was not detected in the ureter, ureteric bud or its derivatives as had been previously suggested. At 6 months and I year of age, the Adamts-1 null mice displayed interstitial fibrosis in the cortical and medullary regions of the kidney. At I year of age, the Adamts-1 null mice displayed mild interstitial matrix expansion associated with increased collagen type IV expression, without apparent tubular dilatation, compared to wild-type animals. Immunohistochemical analysis demonstrated TGF-beta protein localized to infiltrating macrophages and glomeruli of Adamts-1 null mice. Conclusions. Adamts-1 is required for the normal development of the kidney. The defect observed in its absence results from a dysgenic malformation affecting the medulla that becomes apparent at birth, once the kidneys start to function.
Resumo:
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter. (c) 2006 Elsevier B.V. All rights reserved.