14 resultados para UNTRANSLATED REGION

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tartrate-resistant acid phosphatase (TRAP) is highly expressed in osteoclasts and in a subset of tissue macrophages and dendritic cells. It is expressed at lower levels in the parenchymal cells of the liver, glomerular mesangial cells of the kidney and pancreatic acinar cells. We have identified novel TRAP mRNAs that differ in their 5-untranslated region (5'-UTR) sequence, but align with the known murine TRAP mRNA from the first base of Exon 2. The novel 5'-UTRs represent alternative first exons located upstream of the known 5'-UTR. A similar genomic structure exists for the human TRAP gene with partial conservation of the exon and promoter sequences. Expression of the most distal 5'-UTR (Exon 1A) is restricted to adult bone and spleen tissue. Exon 1B is expressed primarily in tissues containing TRAP-positive nonhaematopoietic cells. The known TRAP 5'-UTR (Exon 1) is expressed in tissues characteristic of myeloid cell expression. In addition the Exon 1C promoter sequence is shown to comprise distinct transcription start regions, with an osteoclast-specific transcription initiation site identified downstream of a TATA-like element. Macrophages are shown to initiate transcription of the Exon 1C transcript from a purine-rich region located upstream of the osteoclast-specific transcription start point. The distinct expression patterns for each of the TRAP 5'-UTRs suggest that TRAP mRNA expression is regulated by the use of four alternative tissue- and cell-restricted promoters. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A common single nucleotide polymorphism (SNP) in the 5' untranslated region (5'UTR) of the epidermal growth factor (EGF) gene modulates the level of transcription of this gene and hence is associated with serum levels of EGF. This variant may be associated with melanoma risk, but conflicting findings have been reported. An Australian melanoma case-control sample was typed for the EGF+61A>G transversion (rs4444903). The sample comprised 753 melanoma cases from 738 families stratified by family history of melanoma and 2387 controls from 645 unselected twin families. Ancestry of the cases and controls was recorded, and the twins had undergone skin examination to assess total body nevus count, degree of freckling and pigmentation phenotype. SNP genotyping was carried out via primer extension followed by matrix-assisted laser desorption time of flight (MALDI-TOF) mass spectroscopy. The EGIF+61 SNP was not found to be significantly associated with melanoma status or with development of nevi or freckles. Among melanoma cases, however, G homozygotes had thicker tumors (p=0.05), in keeping with two previous studies. The EGF polymorphism does not appear to predispose to melanoma or nevus development, but its significant association with tumor thickness implies that it may be a useful marker of prognosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By establishing mouse primary keratinocytes (KCs) in culture, we were able, for the first time, to express papillomavirus major capsid (L1) proteins by transient transfection of authentic or codon-modified L1 gene expression plasmids. We demonstrate in vitro and in vivo that gene codon composition is in part responsible for differentiation-dependent expression of L1 protein in KCs. L1 mRNA was present in similar amounts in differentiated and undifferentiated KCs transfected with authentic or codon-modified L1 genes and had a similar half-life, demonstrating that L1 protein production is posttranscriptionally regulated. We demonstrate further that KCs substantially change their tRNA profiles upon differentiation. Aminoacyl-tRNAs from differentiated KCs but not undifferentiated KCs enhanced the translation of authentic L1 mRNA, suggesting that differentiation-associated change to tRNA profiles enhances L1 expression in differentiated KCs. Thus, our data reveal a novel mechanism for regulation of gene expression utilized by a virus to direct viral capsid protein expression to the site of virion assembly in mature KCs. Analysis of two structural proteins of KCs, involucrin and keratin 14, suggests that translation of their mRNAs is also regulated, in association with KC differentiation in vitro, by a similar mechanism

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The function of the prion protein gene (PRNP) and its normal product PrPC is elusive. We used comparative genomics as a strategy to understand the normal function of PRNP. As the reliability of comparisons increases with the number of species and increased evolutionary distance, we isolated and sequenced a 66.5 kb BAC containing the PRNP gene from a distantly related mammal, the model Australian marsupial Macropus eugenii (tammar wallaby). Marsupials are separated from eutherians such as human and mouse by roughly 180 million years of independent evolution. We found that tammar PRNP, like human PRNP, has two exons. Prion proteins encoded by the tammar wallaby and a distantly related marsupial, Monodelphis domestica (Brazilian opossum) PRNP contain proximal PrP repeats with a distinct, marsupial-specific composition and a variable number. Comparisons of tammar wallaby PRNP with PRNPs from human, mouse, bovine and ovine allowed us to identify non-coding gene regions conserved across the marsupial-eutherian evolutionary distance, which are candidates for regulatory regions. In the PRNP 3' UTR we found a conserved signal for nuclear-specific polyadenylation and the putative cytoplasmic polyadenylation element (CPE), indicating that post-transcriptional control of PRNP mRNA activity is important. Phylogenetic footprinting revealed conserved potential binding sites for the MZF-1 transcription factor in both upstream promoter and intron/intron 1, and for the MEF2, MyTI, Oct-1 and NFAT transcription factors in the intron(s). The presence of a conserved NFAT-binding site and CPE indicates involvement of PrPC in signal transduction and synaptic plasticity. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In humans, a polymorphic gene encodes the drug-metabolizing enzyme NATI (arylamine N-acetyltransferase Type 1), which is widely expressed throughout the body. While the protein-coding region of NATI is contained within a single exon, examination of the human EST (expressed sequence tag) database at the NCBI revealed the presence of nine separate exons, eight of which were located in the 5'non-coding region of NATI. Differential splicing produced at least eight unique mRNA isoforms that could be grouped according to the location of the first exon, which suggested that NATI expression occurs from three alternative promoters. Using RT (reverse transcriptase)-PCR, we identified one major transcript in various epithelial cells derived from different tissues. In contrast, multiple transcripts were observed in blood-derived cell lines (CEM, THP-1 and Jurkat), with a novel variant, not identified in the EST database, found in CEM cells only. The major splice variant increased gene expression 9-11-fold in a luciferase reporter assay, while the other isoforrns were similar or slightly greater than the control. We examined the upstream region of the most active splice variant in a promoter-reporter assay, and isolated a 257 bp sequence that produced maximal promoter activity. This sequence lacked a TATA box, but contained a consensus Sp1 site and a CAAT box, as well as several other putative transcription-factor-binding sites. Cell-specific expression of the different NATI transcripts may contribute to the variation in NATI activity in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deficiencies in DNA repair have been hypothesized to increase cancer risk and excess cancer incidence is a feature of inherited diseases caused by defects in DNA damage recognition and repair. We investigated, using a case-control design, whether the double-strand break repair gene polymorphisms RAD51 5' untranslated region -135 G > C, XRCC2 R188H G > A, and XRCC3 T241M C > T were associated with risk of breast or ovarian cancer in Australian women. Sample sets included 1,456 breast cancer cases and 793 age-matched controls ages under 60 years of age, 549 incident ovarian cancer cases, and 335 controls of similar age distribution. For the total sample and the subsample of Caucasian women, there were no significant differences in genotype distribution between breast cancer cases and controls or between ovarian cancer cases and combined control groups. The crude odds ratios (OR) and 95% confidence intervals (95% CI) associated with the RAD51 GC/CC genotype frequency was OR, 1.10; 95% CI, 0.80-1.41 for breast cancer and OR, 1.22; 95% CI, 0.92-1.62 for ovarian cancer. Similarly, there were no increased risks associated with the XRCC2 GA/AA genotype (OR, 0.98; 95% CI, 0.76-1.26 for breast cancer and OR, 0.93; 95% CI, 0.69-1.25 for ovarian cancer) or the XRCC3 CT/TT genotype (OR, 0.92; 95% Cl, 0.77-1.10 for breast cancer and OR, 0.87; 95% CI, 0.71-1.08 for ovarian cancer). Results were little changed after adjustment for age and other measured risk factors. Although there was little statistical power to detect modest increases in risk for the homozygote variant genotypes, particularly for the rare RAD51 and XRCC2 variants, the data suggest that none of these variants play a major role in the etiology of breast or ovarian cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emiliania huxleyi (Lohm.) Hay and Mohler is a ubiquitous unicellular marine alga surrounded by an elaborate covering of calcite platelets called coccoliths. It is an important primary producer involved in oceanic biogeochemistry and climate regulation. Currently, E. huxleyi is separated into five morphotypes based on morphometric, physiological, biochemical, and immunological differences. However, a genetic marker has yet to be found to characterize these morphotypes. With the use of sequence analysis and denaturing gradient gel electrophoresis, we discovered a genetic marker that correlates significantly with the separation of the most widely recognized A and B morphotypes. Furthermore, we reveal that the A morphotype is composed of a number of distinct genotypes. This marker lies within the 3' untranslated region of a coccolith associated protein mRNA, which is implicated in regulating coccolith calcification. Consequently, we tentatively termed this marker the coccolith morphology motif.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Although there is evidence that post-mortem interval (PMI) is not a major contributor to reduced overall RNA integrity, it may differentially affect a subgroup of gene transcripts that are susceptible to PMI-related degradation. This would particularly have ramifications for microarray studies that include a broad spectrum of genes. Method: Brain tissue was removed from adult mice at 0, 6, 12, 18, 24,36 and 48 h post-mortem. RNA transcript abundance was measured by hybridising RNA from the zero time point with test RNA from each PMI time point, and differential gene expression was assessed using cDNA microarrays. Sequence and ontological analyses were performed on the group of RNA transcripts showing greater than two-fold reduction. Results: Increasing PMI was associated with decreased tissue pH and increased RNA degradation as indexed by 28S/18S ribosomal RNA ratio. Approximately 12% of mRNAs detected on the arrays displayed more than a two-fold decrease in abundance by 48 It post-mortem. An analysis of nucleotide composition provided evidence that transcripts with the AUUUA motif in the 3' untranslated region (3'UTR) were more susceptible to PMI-related RNA degradation, compared to transcripts not carrying the 3'UTR AUUUA motif. Consistent with this finding, ontological analysis showed transcription factors and elements to be over-represented in the group of transcripts susceptible to degradation. Conclusion: A subgroup of mammalian mRNA transcripts are particularly susceptible to PMI-related degradation, and as a group, they are more likely to carry the YUTR AUUUA motif. PMI should be controlled for in human and animal model post-mortem brain studies, particularly those including a broad spectrum of mRNA transcripts. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, a role for agouti signalling protein (ASIP) in human pigmentation has not been well characterized. It is known that agouti plays a pivotal role in the pigment switch from the dark eumelanin to the light pheomelanin in the mouse. However, because humans do not have an agouti banded hair pattern, its role in human pigmentation has been questioned. We previously identified a single polymorphism in the 3'-untranslated region (UTR) of ASIP that was found at a higher frequency in African-Americans compared with other population groups. To compare allele frequencies between European-Australians and indigenous Australians, the g.8818A -> G polymorphism was genotyped. Significant differences were seen in allele frequencies between these groups (P < 0.0001) with carriage of the G allele highest in Australian Aborigines. In the Caucasian sample set a strong association was observed between the G allele and dark hair colour (P = 0.004) (odds ratio 4.6; 95% CI 1.4-15.27). The functional consequences of this polymorphism are not known but it was postulated that it might result in message instability and premature degradation of the transcript. To test this hypothesis, ASIP mRNA levels were quantified in melanocytes carrying the variant and non-variant alleles. Using quantitative real-time polymerase chain reaction the mean ASIP mRNA ratio of the AA genotype to the AG genotype was 12 (P < 0.05). This study suggests that the 3'-UTR polymorphism results in decreased levels of ASIP and therefore less pheomelanin production.