7 resultados para U-addition RNA editing

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian cells harbor numerous small non-protein-coding RNAs, including small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), short interfering RNAs (siRNAs) and small double-stranded RNAs, which regulate gene expression at many levels including chromatin architecture, RNA editing, RNA stability, translation, and quite possibly transcription and splicing. These RNAs are processed by multistep pathways from the introns and exons of longer primary transcripts, including protein-coding transcripts. Most show distinctive temporal- and tissue-specific expression patterns in different tissues, including embryonal stem cells and the brain, and some are imprinted. Small RNAs control a wide range of developmental and physiological pathways in animals, including hematopoietic differentiation, adipocyte differentiation and insulin secretion in mammals, and have been shown to be perturbed in cancer and other diseases. The extent of transcription of non-coding sequences and the abundance of small RNAs suggests the existence of an extensive regulatory network on the basis of RNA signaling which may underpin the development and much of the phenotypic variation in mammals and other complex organisms and which may have different genetic signatures from sequences encoding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing evidence suggests that the development and function of the nervous system is heavily dependent on RNA editing and the intricate spatiotemporal expression of a wide repertoire of non-coding RNAs, including micro RNAs, small nucleolar RNAs and longer non-coding RNAs. Non-coding RNAs may provide the key to understanding the multi-tiered links between neural development, nervous system function, and neurological diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequence diversity in the coat protein coding region of Australian strains of Johnsongrass mosaic virus (JGMV) was investigated. Field isolates were sampled during a seven year period from Johnsongrass, sorghum and corn across the northern grain growing region. The 23 isolates were found to have greater than 94% nucleotide and amino acid sequence identity. The Australian isolates and two strains from the U.S.A. had about 90% nucleotide sequence identity and were between 19 and 30% different in the N-terminus of the coat protein. Two amino acid residues were found in the core region of the coat protein in isolates obtained from sorghum having the Krish gene for JGMV resistance that differed from those found in isolates from other hosts which did not have this single dominant resistance gene. These amino acid changes may have been responsible for overcoming the resistance conferred by the Krish gene for JGMV resistance in sorghum. The identification of these variable regions was essential for the development of durable pathogen-derived resistance to JGMV in sorghum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promoter regions of plant pararetroviruses direct transcription of the full-length viral genome into a pregenomic RNA that is an intermediate in the replication of the virus. It serves as template for reverse transcription and as polycistronic mRNA for translation to viral proteins. We have identified functional promoter elements in the intergenic region of the Cavendish isolate of Banana streak virus (BSV-Cav), a member of the genus Badnavirus. Potential binding sites for plant transcription factors were found both upstream and downstream of the transcription start site by homology search in the PLACE database of plant cis-acting elements. The functionality of these putative cis-acting elements was tested by constructing loss-of-function and regain-of-function mutant promoters whose activity was quantified in embryogenic sugarcane suspension cells. Four regions that are important for activity of the BSV-Cav promoter were identified: the region containing an as-l-like element, the region around-141 and down to -77, containing several putative transcription factor binding sites, the region including the CAAT-box, and the leader region. The results could help explain the high BSV-Cav promoter activity that was observed previously in transgenic sugarcane plants and give more insight into the plant cell-mediated replication of the viral genome in banana streak disease. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 mu M, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 mu M. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oldest known bona fide succession of elastic metasediments Occurs in the Isua Greenstone Belt. SW Greenland and consists of a variety of mica schists and rare metaconglomerates. The metasediments are in direct contact with a felsic metavolcanic lithology that has previously been dated to 3.71 Ga. Based on trace element geochemical data for 30 metasediments, we selected the six samples with highest Zr concentrations for zircon extraction. These samples all yielded very few or no zircon, Those extracted from mica schists yielded ion probe U/Pb ages between 3.70 and 3,71 Ga. One metaconglomerate sample yielded just a single zircon of 3.74 Ga age. The mica schist hosted zircons have U/Pb ages. Th/U ratios, REE patterns and Eu anomalies indistinguishable from zircon in the adjacent 3.71 Ga felsic metavolcanic unit. Trace element modelling requires the bulk of material in the metasediments to be derived from variably weathered mafic lithologies but some metasediments contain substantial contribution from more evolved source lithologies. The paucity of zircon in the mica schists is thus explained by incorporation of material from largely zircon-free volcanic lithologies. The absence of older zircon in the mica schists and the preponderance of mafic source material imply intense, mainly basaltic resurfacing of the early Earth. The implications of this process are discussed, Thermal considerations suggest that horizontal growth of Hadean crust by addition of mafic ultramafic lavas must have triggered self-reorganisation of the protocrust by remelting. Reworking oft Hadean crust may have been aided by burial of hydrated (weathered) metabasalt due to semi-continuous addition of new voluminous basalt Outpouring,;, This process Causes a bias towards eruption of Zr-saturated partial melts at the surface with O-isotope corn posit ion,, potentially different from the mantle. The oldest zircons hosted in sediments would have been buried to substantial depth or formed in plutons that crystallised at some depth from which it took hundreds of millions of years for them to be exhumed and incorporated into much younger sediments. (C) 2005 Elsevier B.V.All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term non-coding RNA (ncRNA) is commonly employed for RNA that does not encode a protein, but this does not mean that such RNAs do not contain information nor have function. Although it has been generally assumed that most genetic information is transacted by proteins, recent evidence suggests that the majority of the genomes of mammals and other complex organisms is in fact transcribed into ncRNAs, many of which are alternatively spliced and/or processed into smaller products. These ncRNAs include microRNAs and snoRNAs (many if not most of which remain to be identified), as well as likely other classes of yet-to-be-discovered small regulatory RNAs, and tens of thousands of longer transcripts (including complex patterns of interlacing and overlapping sense and antisense transcripts), most of whose functions are unknown. These RNAs (including those derived from introns) appear to comprise a hidden layer of internal signals that control various levels of gene expression in physiology and development, including chromatin architecture/epigenetic memory, transcription, RNA splicing, editing, translation and turnover. RNA regulatory networks may determine most of our complex characteristics, play a significant role in disease and constitute an unexplored world of genetic variation both within and between species.