19 resultados para Two-phase flow
em University of Queensland eSpace - Australia
Resumo:
Published polymer distribution data for aqueous poly(ethylene glycol)/dextran mixtures have been reassessed to illustrate the feasibility of their quantitative characterization in terms of the Flory-Huggins theory of polymer thermodynamics. Phase diagrams predicted by this characterization procedure provide better descriptions of the experimental data than those based on an earlier, oversimplified treatment in similar terms. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Including positive end-expiratory pressure (PEEP) in the manual resuscitation bag (MRB) may render manual hyperinflation (MHI) ineffective as a secretion maneuver technique in mechanically ventilated patients. In this study we aimed to determine the effect of increased PEEP or decreased compliance on peak expiratory flow rate (PEF) during MHI. A blinded, randomized study was performed on a lung simulator by 10 physiotherapists experienced in MHI and intensive care practice. PEEP levels of 0-15 cm H2O, compliance levels of 0.05 and 0.02 L/cm H2O, and MRB type were randomized. The Mapleson-C MRB generated significantly higher PEF (P < 0.01, d = 2.72) when compared with the Laerdal MRB for all levels of PEEP. In normal compliance (0.05 L/cm H2O) there was a significant decrease in PEF (P < 0.01, d = 1.45) for a PEEP more than 10 cm H2O in the Mapleson-C circuit. The Laerdal MRB at PEEP levels of more than 10 cm H2O did not generate a PEF that is theoretically capable of producing two-phase gas-liquid flow and, consequently, mobilizing pulmonary secretions. If MHI is indicated as a result of mucous plugging, the Mapleson-C MRB may be the most effective method of secretion mobilization.
Resumo:
A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.
Protective Iron Carbonate Films—Part 2: Chemical Removal by Dissolution in Single-Phase Aqueous Flow
Resumo:
The PEG-Ficoll polymer phase system is one that has been overlooked in the past for biotechnology applications because of the stability of its emulsions. However, new applications, such as emulsion coating of cells, are appearing that rely on this very property. Ficoll is highly polydisperse and multimodal with three distinct Ficoll peaks in gel permeation chromatography. As a result, the transition between one-phase and two-phase systems is blurred and the binodials obtained through turbidometric titration and tie-line analysis differ significantly. Moreover, since the three Ficoll peaks partition differently, tie-line analysis cannot be described by a simple model of the aqueous two-phase system. A simple modification to the model allowed for excellent fit, and this modification may prove well-suited for the many practical cases where aqueous two-phase systems fail to display parallel tie-lines as implicitly assumed in the simpler model.
Resumo:
The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Froth recovery measurements have been conducted in both the presence (three-phase froth) and absence (two-phase froth) of particles of different contact angles in a specially modified laboratory flotation column. Increasing the particle hydrophobicity increased the flow rate of particles entering the froth, while the recovery of particles across the froth phase itself also increased for particle contact angles to 63 and at all vertical heights of the froth column. However, a further increase in the contact angle to 69 resulted in lower particle recovery across the froth phase. The reduced froth recovery for particles of 69 contact angle was linked to significant bubble coalescence within the froth phase. The reduced froth recovery occurred uniformly across the entire particle size range, and was, presumably, a result of particle detachment from coalescing bubbles. Water flow rates across the froth phase also varied with particle contact angle. The general trend was a decrease in the concentrate flow rate of water with increasing particle contact angle. An inverse relationship between water flow rate and bubble radius was also observed, possibly allowing prediction of water flow rate from bubble size measurements in the froth. Comparison of the froth structure, defined by bubble size, gas hold-up and bubble layer thickness, for two- and three-phase froths, at the same frother concentration, showed there was a relationship between water flow rate and froth structure. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. ( 2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass ( TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the positive feedback'' mechanism proposed by Ursino et al. ( 2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.
Resumo:
CFD simulations of the 75 mm, hydrocyclone of Hsieh (1988) have been conducted using Fluent TM. The simulations used 3-dimensional body fitted grids. The simulations were two phase simulations where the air core was resolved using the mixture (Manninen et al., 1996) and VOF (Hirt and Nichols, 1981) models. Velocity predictions from large eddy simulations (LES), using the Smagorinsky-Lilly sub grid scale model (Smagorinsky, 1963; Lilly, 1966) and RANS simulations using the differential Reynolds stress turbulence model (Launder et al., 1975) were compared with Hsieh's experimental velocity data. The LES simulations gave very good agreement with Hsieh's data but required very fine grids to predict the velocities correctly in the bottom of the apex. The DRSM/RANS simulations under predicted tangential velocities, and there was little difference between the velocity predictions using the linear (Launder, 1989) and quadratic (Speziale et al., 1991) pressure strain models. Velocity predictions using the DRSM turbulence model and the linear pressure strain model could be improved by adjusting the pressure strain model constants.
Resumo:
Study objective: UK government policy mandates the introduction of 'intermediate care services' to reduce emergency admissions to hospital from the population aged 75 years or more. We evaluated one of these initiatives-the Keep Well At Home (KWAH) Project-in a West London Primary Care Trust. Design: KWAH involves a two-phase screening process, including a home visit by a community nurse. We employed cohort methods to determine whether KWAH resulted in fewer emergency attendances and admissions to hospital in the target population, from October 1999 to December 2002. Results: estimated levels of coverage in the two phases of screening were 61 and 32%, respectively. The project had not maintained records of which additional health and social care services had been delivered following screening. The rates of emergency admissions to hospital in the 9 months before screening were similar in practices that did and did not join the project (rate ratio (RR) = 1.05; 95% CI 0.95-1.17), suggesting absence of volunteer bias. Over the first 37 months of the project, there was no significant impact on either attendances at Accident & Emergency departments (RR = 1.02; 95% CI 0.97-1.06) or emergency admissions of elderly patients (RR = 0.98; 95% CI 0.93-1.05). Conclusion: the KWAH Project has been ineffective in reducing emergency admissions among the elderly. Significant questions arise in relation to selection of the screening instruments, practicality of achieving higher coverage of the eligible population, and creation of a new postcode lottery.
Resumo:
The conjugation of a lipoamino acid to the N-terminus of Gonadotropin releasing hormone (GnRH) produces a lipophilic peptide from which the parent GnRH peptide is released into solution on treatment with plasma and kidney enzyme preparation. Our findings show that one stereoisomer of the Laa is cleaved very rapidly, providing a bolus dose of the peptide while the opposite stereoisomer is cleaved much more slowly, providing prolonged elevation of peptide concentration. The Laa-Glu linkage appears to act as a two phase prodrug system. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
A volume-averaged two-phase model addressing the main transport phenomena associated with hot tearing in an isotropic mushy zone during solidification of metallic alloys has recently been presented elsewhere along with a new hot tearing criterion addressing both inadequate melt feeding and excessive deformation at relatively high solid fractions. The viscoplastic deformation in the mushy zone is addressed by a model in which the coherent mush is considered as a porous medium saturated with liquid. The thermal straining of the mush is accounted for by a recently developed model taking into account that there is no thermal strain in the mushy zone at low solid fractions because the dendrites then are free to move in the liquid, and that the thermal strain in the mushy zone tends toward the thermal strain in the fully solidified material when the solid fraction tends toward one. In the present work, the authors determined how variations in the parameters of the constitutive equation for thermal strain influence the hot tearing susceptibility calculated by the criterion. It turns out that varying the parameters in this equation has a significant effect on both liquid pressure drop and viscoplastic strain, which are key parameters in the hot tearing criterion. However, changing the parameters in this constitutive equation will result in changes in the viscoplastic strain and the liquid pressure drop that have opposite effects on the hot tearing susceptibility. The net effect on the hot tearing susceptibility is thus small.