75 resultados para Tumor suppressor protein p53
em University of Queensland eSpace - Australia
Resumo:
The p53 gene is a tumor suppressor gene that is commonly mutated in skin cancer and sun-exposed skin, and this can be detected through immunohistochemical expression of the p53 protein. The authors hypothesized that time spent outdoors is associated with p53 protein expression in human skin and that sunscreen use counteracts the association. In 1996, they investigated this in a community-based cross-sectional study in Australia. Detailed information about skin type, time spent outdoors, and sunscreen use was collected from 139 residents of a subtropical township who also provided a skin biopsy from the back of the hand for measurement of p53 expression. Increasing time spent outdoors was positively associated with immuno reactivity in the whole epidermis and in the basal layer of the epidermis. After adjustment for confounders, p53 immunoreactivity was twice as high for people who used sunscreen 1 or 2 days per week as for those who used sunscreen daily (whole epidermis: ratio estimate = 2.0, 95% confidence interval: 1.1, 3.6; basal layer: ratio estimate = 1.7, 95% confidence interval: 0.9, 3.1). The authors conclude that p53 immunoreactivity in the skin is a marker of exposure to ultraviolet light in the past 6 months, but this may be mitigated by regular application of sunscreen.
Resumo:
Phosphorylation of the tumor suppressor p53 is generally thought to modify the properties of the protein in four of its five independent domains. We used synthetic peptides to directly study the effects of phosphorylation on the non-sequence-specific DNA binding and conformation of the C-terminal, basic domain. The peptides corresponded to amino acids 361-393 and were either nonphosphorylated or phosphorylated at the protein kinase C (PKC) site, Ser378, or the casein kinase II (CKII) site, Ser392, or bis-phosphorylated on both the PKC and the CKII sites. A fluorescence polarization analysis revealed that either the recombinant p53 protein or the synthetic peptides bound to two unrelated target DNA fragments. Phosphorylation of the peptide at the PKC or the CKII sites clearly decreased DNA binding, and addition of a second phosphate group almost completely abolished binding. Circular dichroism spectroscopy showed that the peptides assumed identical unordered structures in aqueous solutions. The unmodified peptide, unlike the Ser378 phosphorylated peptide, changed conformation in the presence of DNA. The inherent ability of the peptides to form an alpha-helix could be detected when circular dichroism and nuclear magnetic resonance spectra were: taken in trifluoroethanol-water mixtures. A single or double phosphorylation destabilized the helix around the phosphorylated Ser378 residue but stabilized the helix downstream in the sequence.
Resumo:
p73 has recently been identified as a structural and functional homolog of the tumor suppressor protein p53. Overexpression of p53 activates transcription of p53 effector genes, causes growth inhibition and induced apoptosis. We describe here the effects of a tumor-derived truncated transcript of p73 alpha (p73 Delta exon2) on p53 function and on cell death. This transcript, which lacks the acidic N-terminus corresponding to the transactivation domain of p53, was initially detected in a neuroblastoma cell line. Overexpression of p73 Delta exon2 partially protects lymphoblastoid cells against apoptosis induced by anti-Fas antibody or cisplatin. By cotransfecting p73 Delta exon2 with wild-type p53 in the p53 null line Saos 2, we found that this truncated transcript reduces the ability of wild-type p53 to promote apoptosis. This anti-apoptotic effect was also observed when p73 Delta exon2 was co-transfected with full-length p73 (p73 alpha). This was further substantiated by suppression of p53 transactivation of the effector gene p21-Waf1 in p73 Delta exon2 transfected cells and by inhibition of expression of a reporter gene under the control of the p53 promoter. Thus, this truncated form of p73 can act as a dominant-negative agent towards transactivation by p53 and p73 alpha, highlighting the potential implications of these findings for p53 signaling pathway. Furthermore, we demonstrate the existence of a p73 Delta exon2 transcript in a very significant proportion (46%) of breast cancer cell lines. However, a large spectrum of normal and malignant tissues need to be surveyed to determine whether this transdominant p73 variant occurs in a tumor-specific manner.
Resumo:
Latexin, the only known mammalian carboxypeptidase inhibitor, has no detectable sequence similarity with plant and parasite inhibitors, but it is related to a human putative tumor suppressor protein, TIG1. Latexin is expressed in the developing brain, and we find that it plays a role in inflammation, as it is expressed at high levels and is inducible in macrophages in concert with other protease inhibitors and potential protease targets. The crystal structure of mouse latexin, solved at 1.83 Angstrom resolution, shows no structural relationship with other carboxypeptidase inhibitors. Furthermore, despite a lack of detectable sequence duplication, the structure incorporates two topologically analogous domains related by pseudo two-fold symmetry. Surprisingly, these domains share a cystatin fold architecture found in proteins that inhibit cysteine proteases, suggesting an evolutionary and possibly functional relationship. The structure of the tumor suppressor protein TIG1 was modeled, revealing its putative membrane binding surface.
Resumo:
Areas of the limbic system of adult male Wistar rats were screened for kainic-acid-induced gene expression. Polymerase-chain-reactionbased differential display identified a 147-bp cDNA fragment, which represented an mRNA that was upregulated in the entorhinal cortex and hippocampus in the kainic-acid-treated animals. The sequence was 97.8% homologous to rat 14-3-3 zeta isoform mRNA. Detailed Northern analysis revealed increased mRNA levels in the entorhinal cortex I h after kainic acid exposure and continued elevation 24 h post-injection in both the entorhinal cortex and hippocampus. Western blot analyses confirmed that the protein product of this gene was also present in increased amounts over the same time period. Immunohistochemistry and terminal transferase-mediated dUTP nick end labelling (TUNEL) detected expression of 14-3-3 protein exclusively in the entorhinal cortex and hippocampus, and only in TUNEL-positive neuronal cells. Expression of the tumor suppressor protein, p53 was also induced by kainate injection, and was co-localized with 14-3-3 zeta protein in selected cells only in the affected brain regions. The increase gene expression of 14-3-3 represents a transcription-mediated response associated with region selective neuronal damage induced by kainic acid. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Hemopoietic cells, apparently committed to one lineage, can be reprogrammed to display the phenotype of another lineage. The J2E erythroleukemic cell line has on rare occasions developed the features of monocytic cells. Subtractive hybridization was used in an attempt to identify genes that were up-regulated during this erythroid to myeloid transition. We report here on the isolation of hemopoietic lineage switch 5 (Hls5), a gene expressed by the monocytoid variant cells, but not the parental J2E cells. Hls5 is a novel member of the RBCC (Ring finger, B box, coiled-coil) family of genes, which includes Pml, Herf1, Tif-1alpha, and Rfp. Hls5 was expressed in a wide range of adult tissues; however, at different stages during embryogenesis, Hls5 was detected in the branchial arches, spinal cord, dorsal root ganglia, limb buds, and brain. The protein was present in cytoplasmic granules and punctate nuclear bodies. Isolation of the human cDNA and genomic DNA revealed that the gene was located on chromosome 8p21, a region implicated in numerous leukemias and solid tumors. Enforced expression of Hls5 in HeLa cells inhibited cell growth, clonogenicity, and tumorigenicity. It is conceivable that HLS5 is one of the tumor suppressor genes thought to reside at the 8p21 locus.
Resumo:
The KIAA0101/p15(PAF)/OEATC-1 protein was initially isolated in a yeast two-hybrid screen for proliferating cell nuclear antigen (PCNA) binding partners, and was shown to bind PCNA competitively with the cell cycle regulator p21(WAF). PCNA is involved in DNA replication and damage repair. Using polyclonal antisera raised against a p15(PAF) fusion protein, we have shown that in a range of mammalian tumor and non-tumor cell lines the endogenous p15(PAF) protein localises to the nucleus and the mitochondria. Under normal conditions no co-localisation with PCNA could be detected, however following exposure to UV it was possible to co-immunoprecipitate p15(PAF) and PCNA from a number of cell lines, suggesting a UV-enhanced association of the two proteins. Overexpression of p15(PAF) in mammalian cells was also found to protect cells from UV-induced cell death. Based on similarities between the behaviour of p15(PAF) and the potential tumor suppressor product p33ING1b, we have further shown that these two proteins interact in the same complex in cell cultures. This suggests that p15(PAF) forms part of a larger protein complex potentially involved in the regulation of DNA repair, apoptosis and cell cycle progression. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Polydnaviruses are associated with certain parasitoid wasps and are introduced into the body cavity of the host caterpillar during oviposition. Some of the viral genes are expressed in host tissues and corresponding proteins are secreted into the hemocoel causing suppression of the host immune system. The Cotesia rubecula polydnavirus gene product, CrV1, effectively inactivates hemocytes by mediating cytoskeleton break-down. A precondition for the CrV1 function is the incorporation of the extracellular protein by hemocytes. Here, we show that a coiled-coil domain containing a putative leucine zipper is required for CrV1 function, since removal of this domain abolishes binding and uptake of the CrV1 protein by hemocytes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Cytogenetic and loss of heterozygosity (LOH) studies have long indicated the presence of a tumor suppressor gene (TSG) on 90 involved in the development of melanoma, Although LOH at 90 has been reported in approximately 60% of melanoma tumors, only 5-10% of these tumors have been shown to carry CDKN2A mutations, raising the possibility that another TSG involved in melanoma maps to chromosome 90. To investigate this possibility, a panel of 37 melanomas derived from 35 individuals was analyzed for CDKN2A mutations hy single-strand conformation polymorphism analysis and sequencing. The melanoma samples were then typed for 15 markers that map to 9p13-24 to investigate LOH trends in this region. In those tumors demonstrating retention of heterozygosity at markers flanking CDKN2A and LOH on one or both sides of the gene, multiplex microsatellite PCR was performed to rule out homozygous deletion of the region encompassing CDKN2A. CDKN2A mutations were found in tumors from 5 patients [5 (14%) of 35], 4 of which demonstrated LOH across the entire region examined. The remaining tumor with no observed LOH carried two point mutations, one on each allele, Although LOH was identified at one or more markers in 22 (59%) of 37 melanoma tumors corresponding to 20 (57%) of 35 individuals, only 11 tumors from 9 individuals [9 (26%) of 35] demonstrated LOH at D9S942 and D9S1748, the markers closest to CDKN2A. Of the remaining 11 tumors with LOH, 9 demonstrated LOH at two or more contiguous markers either centromeric and/or telomeric to CDKN2A while retaining heterozygosity at several markers adjacent to CDKN2A. Multiplex PCR revealed one tumor carried a homozygous deletion extending from D9S1748 to the IFN-alpha locus. In the remaining eight tumors, multiplex PCR demonstrated that the observed heterozygosity was not attributable to homozygous deletion and stromal contamination at D9S1748, D9S942, or D9S974, as measured by comparative amplification strengths, which indicates that retention of heterozygosity with flanking LOH does not always indicate a homozygous deletion, This report supports the conclusions of previous studies that at least two TSGs involved in melanoma development in addition to CDKN2A may reside on chromosome 9p.
Resumo:
WT1 encodes a transcription factor involved in kidney development and tumorigenesis. Using representational difference analysis, we identified a new set of WT1 targets, including a homologue of the Drosophila receptor tyrosine kinase regulator, sprouty. Sprouty1 was up-regulated in cell lines expressing wild-type but not mutant WT1. WT1 bound to the endogenous sprouty1 promoter in vivo and directly regulated sprouty1 through an early growth response gene-1 binding site. Expression of Sprouty1 and WT1 overlapped in the developing metanephric mesenchyme, and Sprouty1, like WT1, plays a key role in the early steps of glomerulus formation. Disruption of Sprouty1 expression in embryonic kidney explants by antisense oligonucleotides reduced condensation of the metanephric mesenchyme, leading to a decreased number of glomeruli. In addition, sprouty1 was expressed in the ureteric tree and antisense-treated ureteric trees had cystic lumens. Therefore, sprouty1 represents a physiologically relevant target gene of WT1 during kidney development.
Resumo:
The Wilms' tumour suppressor gene (WT1) encodes a zinc finger-containing nuclear protein essential for kidney and urogenital development. Initially considered a transcription factor, there is mounting evidence that WT1 has a role in post-transcriptional processing. Using the interspecies heterokaryon assay, we have demonstrated that WT1 can undergo nucleocytoplasmic shuttling. We have also mapped the region responsible for nuclear export to residues 182-324. Our data add further complexity to the role of WT1 in trancriptional and post-transcriptional regulation. (C) 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
We describe a network module detection approach which combines a rapid and robust clustering algorithm with an objective measure of the coherence of the modules identified. The approach is applied to the network of genetic regulatory interactions surrounding the tumor suppressor gene p53. This algorithm identifies ten clusters in the p53 network, which are visually coherent and biologically plausible.
Resumo:
The cellular function of the menin tumor suppressor protein, product of the MEN1 gene mutated in familial multiple endocrine neoplasia type 1, has not been defined. We now show that menin is associated with a histone methyltransferase complex containing two trithorax family proteins, MLL2 and Ash2L, and other homologs of the yeast Set1 assembly. This menin-associated complex methylates histone H3 on lysine 4. A subset of tumor-derived menin mutants lacks the associated histone methyltransferase activity. In addition, menin is associated with RNA polymerase II whose large subunit carboxyl-terminal domain is phosphorylated on Ser5. Men1 knockout embryos and cells show decreased expression of the homeobox genes Hoxc6 and Hoxc8. Chromatin immunoprecipitation experiments reveal that menin is bound to the Hoxc8 locus. These results suggest that menin activates the transcription of differentiation-regulating genes by covalent histone modification, and that this activity is related to tumor suppression by MEN1.
Resumo:
Laz, a lipid-modified azurin of the human pathogens Neisseria gonorrhoeae and Neisseria meningitidis, is involved in defense against oxidative stress and copper toxicity; laz mutant strains are hypersensitive to hydrogen peroxide and copper. The N. gonorrhoeae laz mutant also has decreased survival in an ex vivo primary human ectocervical epithelial assay.