6 resultados para Tumor antigens
em University of Queensland eSpace - Australia
Resumo:
Background: Although immunization with tumor antigens can eliminate many transplantable tumors in animal models, immune effector mechanisms associated with successful immunotherapy of epithelial cancers remain undefined. Methods: Skin from transgenic mice expressing the cervical cancer-associated tumor antigen human papillornavirus type 16 (HPV16) E6 or E7 proteins from a keratin 14 promoter was grafted onto syngeneic, non-transgenic mice. Skin graft rejection was measured after active immunization with HPV16 E7 and adoptive transfer of antigen-specific T cells. Cytokine secretion of lymphocytes from mice receiving skin grafts and immunotherapy was detected by enzyme-linked immunosorbent assay, and HPV16 E7-specific memory CD8(+) T cells were detected by flow cytometry and ELISPOT. Results: Skin grafts containing HPV16 E6- or E7-expressing keratinocytes were not rejected spontaneously or following immunization with E7 protein and adjuvant. Adoptive transfer of E7-specific T-cell receptor transgenic CD8(+) T cells combined with immunization resulted in induction of antigen-specific interferon gamma-secreting CD8(+) T cells and rejection of HPV16 E7-expressing grafts. Specific memory CD8(+) T cells were generated by immunotherapy. However, a further HPV16 E7 graft was rejected from animals with memory T cells only after a second E7 immunization. Conclusions: Antigen-specific CD8(+) T cells can destroy epithelium expressing HPV16 E7 tumor antigen, but presentation of E7 antigen from skin is insufficient to reactivate memory CD8(+) T cells induced by immunotherapy. Thus, effective cancer immunotherapy in humans may need to invoke sufficient effector as well as memory T cells.
Resumo:
The prevalence of tumours of the germ line is increasing in the male population. This complex disease has a complex aetiology. We examine the contribution of genetic mutations to the development of germ line tumours in this review. In particular, we concentrate on fly and mouse experimental systems in order to demonstrate that mutations in some conserved genes cause pathologies typical of certain human germ cell tumours, whereas other mutations elicit phenotypes that are unique to the experimental model. Despite these experimental systems being imperfect, we show that they are useful models of human testicular germ cell tumourigenesis.
Resumo:
The EBV-encoded latent membrane proteins (LMP1 and LMP2), which are expressed in various EBV-associated malignancies have been proposed as a potential target for CTL-based therapy. However, the precursor frequency for LMP-specific CTL is generally low, and immunotherapy based on these antigens is often compromised by the poor immunogenicity and potential threat from their oncogenic potential. Here we have developed a replication-incompetent adenoviral vaccine that encodes multiple HLA class I-restricted CTL epitopes from LMP1 and LMP2 as a polyepitope. Immunization with this polyepitope vaccine consistently generated strong LMP-specific CTL responses in HLA A2/K-b mice, which can be readily detected by both ex vivo and in vivo T-cell assays. Furthermore, a human CTL response to LMP antigens can be rapidly expanded after stimulation with this recombinant polyepitope vector. These expanded T cells displayed strong lysis of autologous target cells sensitized with LMP1 and/or LMP2 CTL epitopes. More importantly, this adenoviral vaccine was also successfully used to reverse the outgrowth of LMP1-expressing tumors in HLA A2/K-b mice. These studies demonstrate that a replication-incompetent adenovirus polyepitope vaccine is an excellent tool for the induction of a protective CTL response directed toward multiple LMP CTL epitopes restricted through common HLA class I alleles prevalent in different ethnic groups where EBV-associated malignancies are endemic.
Resumo:
The manipulation of dendritic cells (DCs) ex vivo to present tumor-associated antigens for the activation and expansion of tumor-specific cytotoxic T lymphocytes (CTLs) attempts to exploit these cells’ pivotal role in immunity. However, significant improvements are needed if this approach is to have wider clinical application. We optimized a gene delivery protocol via electroporation for cord blood (CB) CD34+ DCs using in vitro–transcribed (IVT) mRNA. We achieved > 90% transfection of DCs with IVT-enhanced green fluorescent protein mRNA with > 90% viability. Electroporation of IVT-mRNA up-regulated DC costimulatory molecules. DC processing and presentation of mRNA-encoded proteins, as major histocompatibility complex/peptide complexes, was established by CTL assays using transfected DCs as targets. Along with this, we also generated specific antileukemic CTLs using DCs electroporated with total RNA from the Nalm-6 leukemic cell line and an acute lymphocytic leukemia xenograft. This significant improvement in DC transfection represents an important step forward in the development of immunotherapy protocols for the treatment of malignancy.