21 resultados para Tropical breeding program

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seventy sorghum inbred lines which formed part of the Queensland Department of Primary Industries (QDPI) sorghum breeding program were screened with 104 previously mapped RFLP markers. The lines were related by pedigree and consisted of ancestral source lines, intermediate lines and recent releases from the program. We compared the effect of defining marker alleles using either identity by state (IBS) or identity by descent (IBD) on our capacity to trace markers through the pedigree and detect evidence of selection for particular alleles. Allelic identities defined using IBD were much more sensitive for detecting non-Mendelian segregation in this pedigree. Only one marker allele showed significant evidence of selection when IBS was used compared with ten regions with particular allelic identities when IBD was used. Regions under selection were compared with the location of QTLs for agronomic traits known to be under selection in the breeding program. Only two of the ten regions were associated with known QTLs that matched with knowledge of the agronomic characteristics of the ancestral lines. Some of the other regions were hypothesised to be associated with genes for particular traits based on the properties of the ancestral source lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant breeders use many different breeding methods to develop superior cultivars. However, it is difficult, cumbersome, and expensive to evaluate the performance of a breeding method or to compare the efficiencies of different breeding methods within an ongoing breeding program. To facilitate comparisons, we developed a QU-GENE module called QuCim that can simulate a large number of breeding strategies for self-pollinated species. The wheat breeding strategy Selected Bulk used by CIMMYT's wheat breeding program was defined in QuCim as an example of how this is done. This selection method was simulated in QuCim to investigate the effects of deviations from the additive genetic model, in the form of dominance and epistasis, on selection outcomes. The simulation results indicate that the partial dominance model does not greatly influence genetic advance compared with the pure additive model. Genetic advance in genetic systems with overdominance and epistasis are slower than when gene effects are purely additive or partially dominant. The additive gene effect is an appropriate indicator of the change in gene frequency following selection when epistasis is absent. In the absence of epistasis, the additive variance decreases rapidly with selection. However, after several cycles of selection it remains relatively fixed when epistasis is present. The variance from partial dominance is relatively small and therefore hard to detect by the covariance among half sibs and the covariance among full sibs. The dominance variance from the overdominance model can be identified successfully, but it does not change significantly, which confirms that overdominance cannot be utilized by an inbred breeding program. QuCim is an effective tool to compare selection strategies and to validate some theories in quantitative genetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tropical abalone Haliotis asinina is a wild-caught and cultured species throughout the Indo-Pacific as well as being an emerging model species for the study of haliotids. H. asinina has the fastest recorded natural growth rate of any abalone and reaches sexual maturity within one year. As such, it is a suitable abalone species for selective breeding for commercially important traits such as rapid growth. Estimating the amount of variation in size that is attributable to heritable genetic differences can assist the development of such a selective breeding program. Here we estimated heritability for growth-related traits at 12 months of age by creating a single cohort of 84 families in a full-factorial mating design consisting of 14 sires and 6 dams. Of 500 progeny sampled, 465 were successfully assigned to their parents based on shared alleles at 5 polymorphic microsatellite loci. Using an animal model, heritability estimates were 0.48 +/- 0.15 for shell length, 0.38 +/- 0.13 for shell width and 0.36 +/- 0.13 for weight. Genetic correlations were > 0.98 between shell parameters and weight, indicating that breeding for weight gains could be successfully achieved by selecting for shell length. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An investigation was conducted to evaluate the impact of experimental designs and spatial analyses (single-trial models) of the response to selection for grain yield in the northern grains region of Australia (Queensland and northern New South Wales). Two sets of multi-environment experiments were considered. One set, based on 33 trials conducted from 1994 to 1996, was used to represent the testing system of the wheat breeding program and is referred to as the multi-environment trial (MET). The second set, based on 47 trials conducted from 1986 to 1993, sampled a more diverse set of years and management regimes and was used to represent the target population of environments (TPE). There were 18 genotypes in common between the MET and TPE sets of trials. From indirect selection theory, the phenotypic correlation coefficient between the MET and TPE single-trial adjusted genotype means [r(p(MT))] was used to determine the effect of the single-trial model on the expected indirect response to selection for grain yield in the TPE based on selection in the MET. Five single-trial models were considered: randomised complete block (RCB), incomplete block (IB), spatial analysis (SS), spatial analysis with a measurement error (SSM) and a combination of spatial analysis and experimental design information to identify the preferred (PF) model. Bootstrap-resampling methodology was used to construct multiple MET data sets, ranging in size from 2 to 20 environments per MET sample. The size and environmental composition of the MET and the single-trial model influenced the r(p(MT)). On average, the PF model resulted in a higher r(p(MT)) than the IB, SS and SSM models, which were in turn superior to the RCB model for MET sizes based on fewer than ten environments. For METs based on ten or more environments, the r(p(MT)) was similar for all single-trial models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6) for the tainted lowland rice environments. The main reason for the poor adoption of new cultivars by farmers is the susceptibility to diseases and unacceptable grain qualities. The conventional breeding program also takes at least 15 years from initial crossing to the release of new cultivars. A new breeding strategy can be established to shorten the period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), and early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer genes and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown plant hopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A large portion of the world’s poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Asia, about 50% of all the rice land is rainfed and, although rice yields in irrigated systems have doubled and tripled over the past 30 years, only modest gains have occurred in rainfed rice systems. In part, this is because of the difficulty in improving rice varieties for environments that are heterogeneous and variable, and in part because there has been little effort to breed rice for drought tolerance. Information available for other cereals (for example, maize, Bänziger et al 2000) and for wheat and the limited or circumstantial evidence available for rice indicate that we can now breed varieties that have improved yield under drought and produce high yields in the good seasons. This manual aims to help plant breeders develop such varieties. While the manual focuses on drought tolerance, this must be integrated with the mainstream breeding program that also deals with agronomic adaptation, grain quality, and pest and disease resistance. Mackill et al (1996) have written a guide to the overall improvement of rice for rainfed conditions. This manual should be seen as an amplification of and updating of the section on drought tolerance in that book. Because final proof of many approaches for breeding drought-tolerant rice is not yet available, and because some aspects may not work in all environments and germplasm, we recommend that you use this manual with caution. Test the suggested approaches and only implement them on a large scale if they are effective and realistic for your own situation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the past 20 years, the rice-breeding program in Thailand had little success in developing new cultivars to replace Kao Dawk Mali 105 (KDML105) and Kao Khor 6 (RD6). Main reason is a poor adoption of new cultivars by farmers due to poor adaptation of new cultivars to the rainfed environments, susceptibility to diseases and insect pests and unacceptable grain qualities. The conventional breeding program also takes at least 15 years for releasing new cultivars. New breeding strategy can be established to shorten period for cultivar improvement by using marker-assisted selection (MAS), rapid generations advance (RGA), early generation testing in multi-locations for grain yield and qualities. Four generation of MAS backcross breeding were conducted to transfer gene and QTL for bacterial blight resistance (BLB), submergence tolerance (SUB), brown planthopper resistance (BPH) and blast resistance (BL) into KDML105. Selected backcross lines, introgressed with target gene/QTL, were tolerant to SUB and resistant to BLB, BPH and BL. The agronomic performance and grain quality of these lines were as good as or better than KDML105.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular diversity among 421 clones of cultivated sugarcane and wild relatives was analysed using AFLP markers. Of these clones, 270 were Saccharum officinarum and 151 were either cultivars produced by the Australian breeding program or important parents used in the breeding program. The S. of. cinarum clones were obtained from a collection that contained clones from all the major regions where S. of. cinarum is grown. Five AFLP primer combinations generated 657 markers ofwhich 614 were polymorphic. All clones contained a large number of markers; a result of the polyploid nature and heterozygosity of the genome. S. of. cinarum clones from New Guinea displayed greater diversity than S. of. cinarum clones from other regions. This is in agreement with the hypothesis that New Guinea is the centre of origin of this species. The S. of. cinarum clones from Hawaii and Fiji formed a separate group and may correspond to clones that have been introgressed with other members of the ` Saccharum complex'. Greater diversity was found in the cultivars than in the S. of. cinarum clones due to the introgression of S. spontaneum chromatin. These cultivars clustered as expected based on pedigree. The major contribution of clones QN66- 2008 and Nco310 to Australian sugarcane cultivars divided the cultivars into 2 main groups. Although only a fewS. of. cinarum clones are known to have been used in the breeding of current cultivars, about 90% of markers present in the S. of. cinarum clone collection ( 2n= 80) were also present in the cultivar collection. This suggests that most of the observed genetic diversity in S. of. cinarum has been captured in Australian sugarcane germplasm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large portion of the world's poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Thailand there are approximately 6.2 million ha of rain fed lowland rice, which account for 67% of the country's total rice-growing area. This rice system is often characterised by too much and too little water in the same season. Farmers' estimates of their annual losses to drought are as high as 45% in the upper parts of the toposequence. In contrast to irrigated rice systems, gains from crop improvement of rainfed rice have been modest, in part because there has been little effort to breed and select for drought tolerance for the target rainfed environments. The crop improvement strategy being used in Thailand considers three mechanisms that influence yield in the drought prone targets: yield potential as an important mechanism for mild drought (where yield loss is less than 50%), drought escape (appropriate phenology) and drought tolerance traits of leaf water potential, sterility, flower delay and drought response index for more severe drought conditions. Genotypes are exposed to managed drought environments for selection of drought tolerant genotypes. A marker assisted selection (MAS) scheme has been developed and applied for selection of progenies in the backcrossing program. The plant breeding program uses rapid generation advance techniques that enable early yield testing in the target population of environments (TPE) through inter-station (multi-location yield testing) and on-farm trials. A farmer participatory approach has been used to identify the TPE for the breeding program. Four terrace paddy levels have been identified, upper (drought), middle (drought prone to favorable) and lower (flooded). This paper reports the change in the breeding program for the drought prone tainted lowland rice environments of North and Northeast Thailand by incorporating our knowledge on adaptation and on response of rice to drought. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drought is a major constraint for rice production in the rainfed lowlands in Southeast Asia and Eastern India. The breeding programs for tainted lowland rice in these regions focus on adaptation to a range of drought conditions. However, a method of selection of drought tolerant genotypes has not been established and is considered to be one of the constraints faced by rice breeders. Drought response index (DRI) is based on grain yield adjusted for variation in potential yield and flowering date, and has been used recently, but its consistency among drought environments and hence its usefulness is not certain. In order to establish a selection method and subsequently to identify donor parents for drought resistance breeding, a series of experiments with 15 contrasting genotypes was conducted under well-watered and managed drought conditions at two sites for 5 years in Cambodia. Water level in the field was recorded and used to estimate the relative water level (WLREL) around flowering as an index of the severity of water deficit at the time of flowering for each entry. This was used to determine if DRI or yield reduction was due to drought tolerance or related to the amount of available water at flowering, i.e. drought escape. Grain yield reduction due to drought ranged from 12 to 46%. The drought occurred mainly during the reproductive phase, while four experiments had water stress from the early vegetative stage. There was significant variation for water availability around flowering among the nine experiments and this was associated with variation in mean yield reduction. Genotypic variation in DRI was consistent among most experiments, and genotypic mean DRI ranged from -0.54 to 0.47 (LSD 5% = 0.47). Genotypic variation in DRI was not related to WLREL around flowering in the nine environments. It is concluded that selection for DRI under drought conditions would allow breeders to identify donor lines with high drought tolerance as an important component of breeding better adapted varieties for the rainfed lowlands; two genotypes were identified with high DRI and low yield reduction and were subsequently used in the breeding program in Cambodia. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnitude and nature of genotype-by-environment interactions (G×E) for grain yield (GY) and days to flower (DTF) in Cambodia were examined using a random population of 34 genotypes taken from the Cambodian rice improvement program. These genotypes were evaluated in multi-environment trials (MET) conducted across three years (2000 to 2002) and eight locations in the rainfed lowlands. The G×E interaction was partitioned into components attributed to genotype-by-location (G×L), genotype-by-year (G×Y) and genotype-by-location-by-year (G×L×Y) interactions. The G×L×Y interaction was the largest component of variance for GY. The G×L interaction was also significant and comparable in size to the genotypic component (G). The G×Y interaction was small and non significant. A major factor contributing to the large G×L×Y interactions for GY was the genotypic variation for DTF in combination with environmental variation for the timing and intensity of drought. Some of the interactions for GY associated with timing of plant development and exposure to drought were repeatable across the environments enabling the identification of three-target populations of environments (TPE) for consideration in the breeding program. Four genotypes were selected for wide adaptation in the rainfed lowlands in Cambodia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large portion of the world’s poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Thailand there are approximately 6.2 million ha of rain fed lowland rice which account for 67% of the country’s total rice-growing area. This rice system is often characterised by too much and too little water in the same season. Farmers’ estimates of their annual losses to drought are as high as 45% in the upper parts of the toposequence. In contrast to irrigated rice systems, gains from crop improvement of rainfed rice have been modest, in part because there has been little effort to breed and select for drought tolerance for the target rainfed environments. The crop improvement strategy being used in Thailand considers three mechanisms that influence yield in the drought prone targets: yield potential as an important mechanism for mild drought (where yield loss is less than 50%), drought escape (appropriate phenology) and drought tolerance traits of leaf water potential, sterility, flower delay and drought response index for more severe drought conditions. Genotypes are exposed to managed drought environments for selection of drought tolerant genotypes. A marker assisted selection (MAS) scheme has been developed and applied for selection of progenies in the backcrossing program. The plant breeding program uses rapid generation advance techniques that enable early yield testing in the target population of environments (TPE) through inter-station (multi-location yield testing) and on-farm trials. A farmer participatory approach has been used to identify the TPE for the breeding program. Four terrace paddy levels have been identified, upper (drought), middle (drought prone to favorable) and lower (flooded). This paper reports the change in the breeding program for the drought prone rainfed lowland rice environments of North and Northeast Thailand by incorporating our knowledge on adaptation and on response of rice to drought.