16 resultados para Triacylglycerol (TAG)
em University of Queensland eSpace - Australia
Resumo:
Samples of dermal and epidermal tissues of epaulette sharks Hemiscyllium ocellatum were examined histologically to assess damage caused by tagging. Tissues from around tag sites were removed at time intervals ranging from 100 min to 284 days post-tagging. These samples showed acute and chronic responses to tagging. Acute responses consisted of localized tissue breakdown and haemorrhaging, and occurred within the first few hours after tag insertion. At 10 h post-tagging, an intermediate response was apparent. This phase was characterized by further haemorrhaging and red and white blood cell movement into the wound area. The chronic response observed in the 10-284-day post-tagging samples was characterized by fibrous tissue formation to sequester the tag. This tissue presumably protects the adjacent musculature from further trauma produced by movement of the tag and provides a continuous barrier between the internal and external milieu. Tissue repair appeared to progress consistently in all specimens and no secondary infections at the tag site were seen. Tagging produced only localized tissue disruption and did not appear to be detrimental to the long term health of individual sharks. Our findings show that spaghetti style dart tagging is an acceptable method for marking individuals (40-75+ cm total length) of this species. (C) 1997 The Fisheries Society of the British Isles.
Resumo:
The tropical abalone. Haliotis asinina. is,in ideal species to investigate the molecular mechanisms that control development. growth, reproduction and shell formation in all cultured haliotids. Here we describe the analysis of 232 expressed sequence tags (EST) obtained front a developmental H. asinina cDNA library intended for future microarray studies. From this data set we identified 183 unique gene Clusters. Of these, 90 clusters showed significant homology with sequences lodged in GenBank, ranging in function from general housekeeping to signal transduction, gene regulation and cell-cell communication. Seventy-one clusters possessed completely novel ORFs greater than 50 codons in length, highlighting the paucity of sequence data from molluscs and other lophotrochozoans. This study of developmental gene expression in H. asinina provides the foundation for further detailed analyses of abalone growth, development and reproduction.
Resumo:
This paper describes a generic method for the site-specific attachment of lathanide complexes to proteins through a disulfide bond. The method is demonstrated by the attachment of a lanthanide-binding peptide tag to the single cysteine residue present in the N-terminal DNA-binding domain of the Echerichia coli arginine repressor. Complexes with Y3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+ ions were formed and analysed by NMR spectroscopy. Large pseudocontact shifts and residual dipolar couplings were induced by the lanthanide-binding tag in the protein NMR spectrum, a result indicating that the tag was rigidly attached to the protein. The axial components of the magnetic susceptibility anisostropy tensors determined for the different lanthanide ions were similarly but not identically oriented. A single tag with a single protein attachment site can provide different pseudocontact shifts from different magnetic susceptibility tensors and thus provide valuable nondegenerate long-range structure information in the determination of 3D protein structures by NMR spectroscopy.
Resumo:
One of the challenges in scientific visualization is to generate software libraries suitable for the large-scale data emerging from tera-scale simulations and instruments. We describe the efforts currently under way at SDSC and NPACI to address these challenges. The scope of the SDSC project spans data handling, graphics, visualization, and scientific application domains. Components of the research focus on the following areas: intelligent data storage, layout and handling, using an associated “Floor-Plan” (meta data); performance optimization on parallel architectures; extension of SDSC’s scalable, parallel, direct volume renderer to allow perspective viewing; and interactive rendering of fractional images (“imagelets”), which facilitates the examination of large datasets. These concepts are coordinated within a data-visualization pipeline, which operates on component data blocks sized to fit within the available computing resources. A key feature of the scheme is that the meta data, which tag the data blocks, can be propagated and applied consistently. This is possible at the disk level, in distributing the computations across parallel processors; in “imagelet” composition; and in feature tagging. The work reflects the emerging challenges and opportunities presented by the ongoing progress in high-performance computing (HPC) and the deployment of the data, computational, and visualization Grids.
Resumo:
Tissue responses to the application of Rototags and Jumbo Rototags in the first dorsal fin of Carcharhinus melanopterus, C. obscurus and C. plumbeus were examined. The acute response included tissue tearing and haemorrhage and was present by 5 days post-tagging. The intermediate response had begun by 20 days post-tagging and continued beyond 207 days. This response involved decreased red blood cell activity as the inflammatory response commenced. The chronic response had begun by 301 days and was complete by 553 days with a layer of fibrous connective tissue walling off the tag. External damage to the fin was caused by continued abrasion by the tag. Repair scales were observed at 242 days using scanning electron microscopy and were confirmed histologically in 61- and 553-day samples. Repair scales were not seen in areas of continuous abrasion. No infection was observed in tissues surrounding the wound. Disruption of the fin surface was observed due to abrasion by the tag, but did not appear to cause a severe tissue reaction. The tissue responses observed were consistent with a normal, but relatively slow, healing in the vicinity of the tag wound. Use of Rototags or Jumbo Rototags appears to be an efficient way of marking elasmobranchs with minimal damage to the shark. (C) 1998 The Fisheries Society of the British Isles.
Resumo:
Reverse transcription coupled with polymerase chain reaction and restriction enzyme analysis was used to characterize 12 Drosophila C virus isolates from geographically different regions. A 1.2-kb fragment was amplified from cDNA and profiles from digestion with 20 restriction enzymes were generated. Analysis of the restriction fragment data gave estimates of nucleotide divergence of 0-10% between isolates. The isolates were grouped on the basis of genetic distance estimates derived from the restriction data. For the isolates from which a single genotype could be purified, a geographical pattern in the distribution of viral genotypes was identified. The 4 Moroccan isolates were very closely related to each other, differing in only 1 restriction profile. The 2 Australian isolates were each other's closest relatives, as were the 2 isolates first recovered in France. The PCR-RFLP technique used in this study has provided us with a simple procedure which can be used to characterize DCV isolates. A single enzyme, Tag I, generated 5 distinct and diagnostic restriction fragment patterns, which allowed easy assignment of isolates to one of the five viral genotypes identified in this study. (C) 1999 Academic Press.
Resumo:
Tracking the reaction history is the means of choice to identify bioactive compounds in large combinatorial libraries. The authors describe two approaches to synthesis on silica beads: a) addition of a reporter dye tag during each synthesis step (see Figure), which attaches itself to the bead by colloidal forces, and b) encapsulating arrays of fluorescent dyes into the beads to encode them uniquely, for recognition with a flow cytometer after each reaction step.
Resumo:
Using differential display-polymerase chain reaction, we identified a novel gene sequence, designated solid tumor-associated gene 1 (STAG1), that is upregulated in renal cell carcinoma (RCC). The full-length cDNA (4839 bp) encompassed the recently reported androgen-regulated prostatic cDNA PMEPA1 and so we refer to this gene as STAG1/PMEPA1, Two STAG1/PMEPA1 mRNA transcripts of approximately 2.7 an 5 kb, with identical coding regions but variant 3' untranslated regions, were predominantly expressed in normal prostate tissue and at lower levels in the ovary. The expression of this gene was upregulated in 87% of RCC samples and also was upregulated in stomach and rectal adenocarcinomas. In contrast, STAG1/PMEPA1 expression was barely detectable in leukemia and lymphoma samples, Analysis of expressed sequence tag databases showed that STAG1/PMEPA1 also was expressed in pancreatic, endometrial, and prostatic adenocarcinomas. The STAG1/PMEPA1 cDNA encodes a 287-amino-acid protein containing a putative transmembrane domain and motifs that suggest that it may bind src homology 3- and tryptophan tryptophan domain-containing proteins. This protein shows 67% identity to the protein encoded by the chromosome 18 open reading frame 1 gene. Translation of STAG1/PMEPA1 mRNA in vitro showed two products of 36 and 39 kDa, respectively, suggesting that translation may initiate at more than one site. Comparison to genomic clones showed that STAG1/PMEPA1 was located on chromosome 20q13 between microsatellite markers D20S183 and D20S173 and spanned four exons and three introns. The upregulation of this gene in several solid tumors indicated that it may play an important role in tumorigenesis. (C) 2001 Wiley-Liss, Inc.
Resumo:
Insect ganglia are often composed of fused segmental units or neuromeres. We estimated the evolution of the ventral nerve cord (VNC) in higher Diptera by comparing the patterns of neuromere fusion among 33 families of the Brachycera. Variation within families is uncommon, and VNC architecture does not appear to be influenced by body shape. The outgroup pattern, seen in lower Diptera, is fusion of neuromeres belonging to thoracic segments 1 and 2 (T1 and T2), and fusion of neuromeres derived from T3 and abdominal segment 1 (A1). In the abdomen, neuromeres A7-10 are fused into the terminal abdominal ganglion (TAG). Increased neuromere fusion is a feature of the Brachycera. No brachyceran shows less fusion than the outgroups. We established six pattern elements; (1) fusion of T1 and T2, (2) fusion of T3 and A1, (3) fusion of the T1/T2 andT3/A1 ganglia, (4) increase in the number of neuromeres comprising the TAG, (5) anteriorward fusion of abdominal neuromeres, and (6) the complete fusion of thoracic and abdominal neuromeres into a synganglion. States 1 and 2 are present in the outgroup lower Diptera, and state 3 in the Xylophagomorpha, Stratiomyomorpha, Tabanomorpha and Cyclorrhapha. State 4 is a feature of all Eremoneura. State 5 is present in Cyclorrhapha only, and state 6, fusion into a synganglion, has evolved at least 4 times in the Eremoneura. Synapomorphies are provided for the Cyclorrhapha and Muscoidea, and a grouping of three basal brachyceran infraorders Xylophagomorpha, Stratiomyomorpha and Tabanomorpha. The patterns of fusion suggest that VNC architecture has evolved irreversibly, in accordance with Dollo's law.
Resumo:
An active form of the Dengue virus protease NS3 (CF40.Gly.NS3pro) was expressed in Escherichia coli. This construct consists of a critical 40 amino acid cofactor domain from NS2B fused to the N-terminal 184 amino acid protease domain of NS3 via a flexible, covalent linker (Gly(4)SerGly(4)). The recombinantly produced protein is soluble and has a hexa-histidine tag engineered at the N-terminus for ease of purification using metal affinity chromatography. However, the presence of lower molecular weight impurities after affinity chromatography indicated the need for additional purification steps. The consistent appearance of these impurities suggested that they may be the products of proteolysis and/or auto-proteolysis. The latter possibility was subsequently excluded by the observation of the same impurities in a purified, catalytically inactive form of the recombinant protease (CF40.Gly.NS3pro.SA). Further analysis indicated that these impurities may represent premature translation termination products. Regardless of their origin, they were shown to form various sized aggregates with full-length CF40.Gly.NS3pro that can be separated by size exclusion chromatography, yielding fractions of active protease of sufficient purity for crystallisation trials. The ultimate goal of these studies is to obtain a crystal structure of a catalytically active form of the Dengue virus NS3 protease for structure-based drug design. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Background Peroxisome proliferator activated receptor gamma (PPARgamma) is a ligand-activated transcription factor known to be central to both adipose tissue development and insulin action. Growth of adipose tissue requires differentiation of preadipocytes with acquisition of specific cellular functions including insulin sensitivity, leptin secretion and the capacity to store triglyceride. Dietary fatty acids and members of the thiazolidinedione class of compounds have been reported to influence adipogenesis at the transcriptional level. Here, we compare the effects of a dietary fatty acid, linoleic acid, and a thiazolidinedione, rosiglitazone, on biochemical and functional aspects of human preadipocyte differentiation in vitro . Materials and methods Human omental and subcutaneous preadipocytes were subcultured 2-3 times and subsequently differentiated for 21 days in the presence of either linoleic acid or rosiglitazone. Differentiation was assessed using a number of biochemical and functional parameters. Results Omental and subcutaneous preadipocytes differentiated in the presence of linoleic acid showed marked cytoplasmic triacylglycerol accumulation however, no biochemical markers of differentiation (LPL expression, G3PDH gene expression and enzyme activity and leptin expression or secretion) were detected. In contrast, treatment of these cells with rosiglitazone induced full biochemical differentiation as judged by all markers assessed, despite comparatively little lipid accumulation. The rosiglitazone effects were subcutaneous depot-specific. Cells treated with linoleic acid showed decreased glucose uptake cf rosiglitazone-treated cells. A luciferase reporter assay demonstrated that rosiglitazone potently activates h-peroxisome proliferator activated receptor gamma while linoleic acid had no effect. Conclusions These studies demonstrate that (a) human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation; (b) while omental preadipocytes are refractory to biochemical differentiation in vitro , they are able to accumulate triacylglycerol; and (c) rosiglitazone and linoleic acid may exert their effects via different biochemical pathways.
Resumo:
Monoclonal antibody (MAb) 263 is a widely used monoclonal antibody that recognizes the extracellular domain (ECD) of the GH receptor. It has been shown to act as a GH agonist both in vitro and in vivo, and we report here that it must be divalent to exert its effect on the full-length receptor. To understand the mechanism of its agonist action, we have determined the precise epitope for this antibody using a novel random PCR mutagenesis approach together with expression screening in yeast. A library of 5200 clones of rabbit GH receptor ECD mutants were screened both with MAb 263 and with an anticarboxy-tag antibody to verify complete ECD expression. Sequencing for clones that expressed complete ECD but were not MAb 263 positive identified 20 epitope residues distributed in a discontinuous manner throughout the ECD. The major part of the epitope, as revealed after mapping onto the crystal structure model of the ECD molecule, was located on the side and upper portion of domain 1, particularly within the D - E strand disulfide loop 79 - 96. Molecular dynamics docking of an antibody of the same isotype as MAb 263 was used to dock the bivalent antibody to the 1528-Angstrom(2) epitope and to visualize the likely consequences of MAb binding. The minimized model enables the antibody to grasp two receptors in a pincer-like movement from opposite sides, facilitating alignment of the receptor dimerization domains in a manner similar to, but not identical with, GH.
Resumo:
Until recently, glycosylation of proteins in prokaryotes was regarded as uncommon and thought to be limited to special cases such as S-layer proteins and some archeal outer membrane proteins. Now, there are an increasing number of reports of bacterial proteins that are glycosylated. Pilin of pathogenic Neisseria is one of the best characterised post-translation ally modified bacterial proteins, with four different types of modifications reported, including a novel glycosylation. Pilin monomers assemble to form pilus fibres, which are long protein filaments that protrude from the surface of bacterial cells and are key virulence factors. To aid in the investigation of these modifications, pure pilin is required. A number of pilin purification methods have been published, but none are appropriate for the routine purification of pilin from many different isolates. This study describes a novel, rapid, and simple method of pilin purification from Neisseria meningitidis C311#3, which facilitates the production of consistent quantities of pure, native pilin. A 6 x histidine tag was fused to the C-terminus of the pilin subunit structural gene, pilE, via homologous recombination placing the 6 x histidine-tagged allele in the chromosome of N. meningitidis C311#3. Pilin was purified under non-denaturing conditions via a two-step process using immobilised metal affinity chromatography (IMAC), followed by dye affinity chromatography. Analysis of the purified pilin confirmed that it retained both of the post-translational modifications examined. This novel approach may prove to be a generally applicable method for purification and analysis of post-translationally modified proteins in bacteria. (C) 2003 Elsevier Science (USA). All rights reserved.