2 resultados para Tremor
em University of Queensland eSpace - Australia
Resumo:
Objective: Accurate neuromuscular control of the patellofemoral joint is important in knee joint mechanics. Strategies to coordinate the vasti muscles, such as motor unit synchronization, may simplify control of patellar tracking. This study investigated motor unit synchronization between vastus medialis (VM) and lateralis (VL). Methods: Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VM and single- and multi-unit recordings were made from VL. Synchronization was quantified from peaks in the cross-correlogram generated from single MUAP pairs in VL and VM. The proportion of motor units in VM with synchronized firing in VL was also quantified from peaks in averages of multiunit VL EMG triggered from the VM MUAP. Results: A high degree of synchronization of motor unit firing between VM and VL was identified. Results were similar for cross-correlation (similar to 45% of cases) and triggered averages (similar to 41% of cases). Conclusions: The data suggest that synchronization between VM and VL is higher than expected. Agreement between traditional cross-correlation and triggered averaging methods suggest that this new technique may provide a more clinically viable method to quantify synchronization. Significance: High synchronization between VM and VL may provide a solution to simplify control of the mechanically unstable patellofemoral joint. (c) 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Digital still cameras capable of filming short video clips are readily available, but the quality of these recordings for telemedicine has not been reported. We performed a blinded study using four commonly available digital cameras. A simulated patient with a hemiplegic gait pattern was filmed by the same videographer in an identical, brightly lit indoor setting. Six neurologists viewed the blinded video clips on their PC and comparisons were made between cameras, between video clips recorded with and without a tripod, and between video clips filmed on high- or low-quality settings. Use of a tripod had a smaller effect than expected, while images taken on a high-quality setting were strongly preferred to those taken on a low-quality setting. Although there was some variability in video quality between selected cameras, all were of sufficient quality to identify physical signs such as gait and tremor. Adequate-quality video clips of movement disorders can be produced with low-cost cameras and transmitted by email for teleneurology purposes.