4 resultados para Transport inverse du cholestérol
em University of Queensland eSpace - Australia
Resumo:
Background and aims: In HFE associated hereditary haemochromatosis, the duodenal enterocyte behaves as if iron deficient and previous reports have shown increased duodenal expression of divalent metal transporter 1 (DMT1) and iron regulated gene 1 (Ireg1) in affected subjects. In those studies, many patients had undergone venesection, which is a potent stimulus of iron absorption. Our study investigated duodenal expression of DMT1 ( IRE and non-IRE), Ireg1, hephaestin, and duodenal cytochrome-b (Dyctb) in untreated C282Y homozygous haemochromatosis patients, iron deficient patients, and iron replete subjects. Methods: Total RNA was extracted from duodenal biopsies and expression of the iron transport genes was assessed by ribonuclease protection assay. Results: Expression of DMT1 ( IRE) and Ireg1 was increased 3 - 5-fold in iron deficient subjects compared with iron replete subjects. Duodenal expression of DMT1 ( IRE) and Ireg1 was similar in haemochromatosis patients and iron replete subjects but in haemochromatosis patients with elevated serum ferritin concentrations, both DMT1 ( IRE) and Ireg1 expression were inappropriately increased relative to serum ferritin concentration. Hephaestin and Dcytb levels were not upregulated in haemochromatosis. DMT1 ( IRE) and Ireg1 levels showed significant inverse correlations with serum ferritin concentration in each group of patients. Conclusions: These findings are consistent with DMT1 ( IRE) and Ireg1 playing primary roles in the adaptive response to iron deficiency. Untreated haemochromatosis patients showed inappropriate increases in DMT1 ( IRE) and Ireg1 expression for a given level of serum ferritin concentration, although the actual level of expression of these iron transport genes was not significantly different from that of normal subjects.
Resumo:
The focus of the present work is the well-known feature of the probability density function (PDF) transport equations in turbulent flows-the inverse parabolicity of the equations. While it is quite common in fluid mechanics to interpret equations with direct (forward-time) parabolicity as diffusive (or as a combination of diffusion, convection and reaction), the possibility of a similar interpretation for equations with inverse parabolicity is not clear. According to Einstein's point of view, a diffusion process is associated with the random walk of some physical or imaginary particles, which can be modelled by a Markov diffusion process. In the present paper it is shown that the Markov diffusion process directly associated with the PDF equation represents a reasonable model for dealing with the PDFs of scalars but it significantly underestimates the diffusion rate required to simulate turbulent dispersion when the velocity components are considered.
Resumo:
Froth recovery measurements have been conducted in both the presence (three-phase froth) and absence (two-phase froth) of particles of different contact angles in a specially modified laboratory flotation column. Increasing the particle hydrophobicity increased the flow rate of particles entering the froth, while the recovery of particles across the froth phase itself also increased for particle contact angles to 63 and at all vertical heights of the froth column. However, a further increase in the contact angle to 69 resulted in lower particle recovery across the froth phase. The reduced froth recovery for particles of 69 contact angle was linked to significant bubble coalescence within the froth phase. The reduced froth recovery occurred uniformly across the entire particle size range, and was, presumably, a result of particle detachment from coalescing bubbles. Water flow rates across the froth phase also varied with particle contact angle. The general trend was a decrease in the concentrate flow rate of water with increasing particle contact angle. An inverse relationship between water flow rate and bubble radius was also observed, possibly allowing prediction of water flow rate from bubble size measurements in the froth. Comparison of the froth structure, defined by bubble size, gas hold-up and bubble layer thickness, for two- and three-phase froths, at the same frother concentration, showed there was a relationship between water flow rate and froth structure. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effect of acceleration skewness on sheet flow sediment transport rates (q) over bar (s) is analysed using new data which have acceleration skewness and superimposed currents but no boundary layer streaming. Sediment mobilizing forces due to drag and to acceleration (similar to pressure gradients) are weighted by cosine and sine, respectively, of the angle phi(.)(tau)phi(tau) = 0 thus corresponds to drag dominated sediment transport, (q) over bar (s)similar to vertical bar u(infinity)vertical bar u(infinity), while phi(tau) = 90 degrees corresponds to total domination by the pressure gradients, (q) over bar similar to du(infinity)/dt. Using the optimal angle, phi = 51 degrees based on that data, good agreement is subsequently found with data that have strong influence from boundary layer streaming. Good agreement is also maintained with the large body of U-tube data simulating sine waves with superimposed currents and second-order Stokes waves, all of which have zero acceleration skewness. The recommended model can be applied to irregular waves with arbitrary shape as long as the assumption negligible time lag between forcing and sediment transport rate is valid. With respect to irregular waves, the model is much easier to apply than the competing wave-by-wave models. Issues for further model developments are identified through a comprehensive data review.