152 resultados para Transport density
em University of Queensland eSpace - Australia
Resumo:
PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport in variable density groundwater flow. Fluid density in PHWAT depends not on only the concentration of a single species as in SEAWAT, but also the concentrations of other dissolved chemicals that can be subject to reactive processes. Simulation results of PHWAT and PHREEQC-2 were compared in their predictions of effluent concentration from a column experiment. Both models produced identical results, showing that PHWAT has correctly coupled the sub-packages. PHWAT was then applied to the simulation of a tank experiment in which seawater intrusion was accompanied by cation exchange. The density dependence of the intrusion and the snow-plough effect in the breakthrough curves were reflected in the model simulations, which were in good agreement with the measured breakthrough data. Comparison simulations that, in turn, excluded density effects and reactions allowed us to quantify the marked effect of ignoring these processes. Next, we explored numerical issues involved in the practical application of PHWAT using the example of a dense plume flowing into a tank containing fresh water. It was shown that PHWAT could model physically unstable flow and that numerical instabilities were suppressed. Physical instability developed in the model in accordance with the increase of the modified Rayleigh number for density-dependent flow, in agreement with previous research. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We present a theory for the transport of molecules adsorbed in slit and cylindrical nanopores at low density, considering the axial momentum gain of molecules oscillating between diffuse wall reflections. Good agreement with molecular dynamics simulations is obtained over a wide range of pore sizes, including the regime of single-file diffusion where fluid-fluid interactions are shown to have a negligible effect on the collective transport coefficient. We show that dispersive fluid-wall interactions considerably attenuate transport compared to classical hard sphere theory.
Resumo:
The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.
Resumo:
Contaminant transport in coastal aquifers is complicated partly due to the conditions at the seaward boundary including seawater intrusion and tidal variations of sea level. Their inclusion in modelling this system will be computationally expensive. Therefore, it will be instructive to investigate the consequence of simplifying the seaward boundary condition by neglecting the seawater density and tidal variations in numerical predictions of contaminant transport in this zone. This paper presents a comparison of numerical predictions for a simplified seaward boundary condition with experimental results for a corresponding realistic one including a saltwater interface and tidal variations. Different densities for contaminants are considered. The comparison suggests that the neglect of the seawater intrusion and tidal variations does not affect noticeably the overall migration rate of the plume before it reaches the saltwater interface. However, numerical prediction shows that a more dense contaminant travels further seaward and part of the solute mass exits under the sea if the seawater density is not included. This is not consistent with the experimental result, which shows that the contaminant travels upwards to the shoreline along the saltwater interface. Neglect of seawater density, therefore, will result in an underestimation of the exit rate of solute mass around the coastline and fictitious migration paths under the seabed. For a less dense contaminant, neglect of seawater density has little effect on numerical prediction of migration paths. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Contaminant transport in coastal aquifers is of increasing interest since, with the development of coastal areas, contaminants from surface sources may enter coastal aquifers and pollute the groundwater flow. Coastal groundwater flow is complicated because of the presence of a freshwater-saltwater diffusion zone and the tidal variation of sea level at the seaward end. This paper investigates experimentally the behaviour of contaminant plumes with different densities in an unconfined coastal aquifer. Experiments were performed in a flow tank filled with glass beads as the porous medium. Results show that the dense contaminant has a more diffusive front than the less dense one in the seaward direction towards the coastline. The plume becomes more diffusive when it travels closer to the saltwater interface. On the contrary, the less dense contaminant presents a relatively sharp outline. It tends to migrate in the upper portion of the aquifer and exits in a concentrated manner over a small discharge area at the coastline, not further seaward under the sea. Non-dimensional parameters show that instabilities occur in our experiments for a density difference of 1.2% or larger between the contaminant and the ambient water. The experimental results provide guidance for field monitoring and numerical modelling. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper employs a two-dimensional variable density flow and transport model to investigate the transport of a dense contaminant plume in an unconfined coastal aquifer. Experimental results are also presented to show the contaminant plume in a freshwater-seawater flow system. Both the numerical and experimental results suggest that the neglect of the seawater interface does not noticeably affect the horizontal migration rate of the plume before it reaches the interface. However, the contaminant will travel further seaward and part of the solute mass will exit under the sea if the higher seawater density is not included. If the seawater density is included, the contaminant will travel upwards towards the beach along the freshwater-saltwater interface as shown experimentally. Neglect of seawater density, therefore, will result in an underestimate of solute mass rate exiting around the coastline. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The influence of near-bed sorting processes on heavy mineral content in suspension is discussed. Sediment concentrations above a rippled bed of mixed quartz and heavy mineral sand were measured under regular nonbreaking waves in the laboratory. Using the traditional gradient diffusion process, settling velocity would be expected to strongly affect sediment distribution. This was not observed during present trials. In fact, the vertical gradients of time-averaged suspension concentrations were found to be similar for the light and heavy minerals, despite their different settling velocities. This behavior implies a convective rather than diffusive distribution mechanism. Between the nonmoving bed and the lowest suspension sampling point, fight and heavy mineral concentration differs by two orders of magnitude. This discrimination against the heavy minerals in the pickup process is due largely to selective entrainment at the ripple face. Bed-form dynamics and the nature of quartz suspension profiles are found to be little affected by the trialed proportion of overall heavy minerals in the bed (3.8-22.1%).
Resumo:
Simulation of the transport of methane in cylindrical silica mesopores have been performed using equilibrium and nonequilibrium molecular dynamics (NEMD) as well as dual control volume grand canonical molecular dynamics methods. It is demonstrated that all three techniques yield the same transport coefficient even in the presence of viscous flow. A modified locally averaged density model for viscous flow, combined with consideration of wall slip through a frictional condition, gives a convincing interpretation of the variation of the transport coefficient over a wide range of densities, and for various pore sizes and temperatures. Wall friction coefficients extracted from NEMD simulations are found to be consistent with momentum transfer arguments, and the approach is shown to be more meaningful than the classical slip length concept. (C) 2003 American Institute of Physics.
Resumo:
We describe a quantum electromechanical system comprising a single quantum dot harmonically bound between two electrodes and facilitating a tunneling current between them. An example of such a system is a fullerene molecule between two metal electrodes [Park et al., Nature 407, 57 (2000)]. The description is based on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and thus incorporates the dynamics of both diagonal (population) and off diagonal (coherence) terms. We derive coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of freedom, including damping of the vibration and thermo-mechanical noise. This dynamical description is related to observable features of the system including the stationary current as a function of bias voltage
Resumo:
We present here a tractable theory of transport of simple fluids in cylindrical nanopores, which is applicable over a wide range of densities and pore sizes. In the Henry law low-density region the theory considers the trajectories of molecules oscillating between diffuse wall collisions, while at higher densities beyond this region the contribution from viscous flow becomes significant and is included through our recent approach utilizing a local average density model. The model is validated by means of equilibrium as well nonequilibrium molecular dynamics simulations of supercritical methane transport in cylindrical silica pores over a wide range of temperature, density, and pore size. The model for the Henry law region is exact and found to yield an excellent match with simulations at all conditions, including the single-file region of very small pore size where it is shown to provide the density-independent collective transport coefficient. It is also shown that in the absence of dispersive interactions the model reduces to the classical Knudsen result, but in the presence of such interactions the latter model drastically overpredicts the transport coefficient. For larger micropores beyond the single-file region the transport coefficient is reduced at high density because of intermolecular interactions and hindrance to particle crossings leading to a large decrease in surface slip that is not well represented by the model. However, for mesopores the transport coefficient increases monotonically with density, over the range studied, and is very well predicted by the theory, though at very high density the contribution from surface slip is slightly overpredicted. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores, and the apparent activation energy is not simply related to the minimum pore potential or the adsorption energy as generally assumed. (C) 2004 American Institute of Physics.
Resumo:
We examine the transport of methane in microporous carbon by performing equilibrium and nonequilibrium molecular dynamics simulations over a range of pore sizes, densities, and temperatures. We interpret these simulation results using two models of the transport process. At low densities, we consider a molecular flow model, in which intermolecular interactions are neglected, and find excellent agreement between transport diffusion coefficients determined from simulation, and those predicted by the model. Simulation results indicate that the model can be applied up to fluid densities of the order to 0.1-1 nm(-3). Above these densities, we consider a slip flow model, combining hydrodynamic theory with a slip condition at the solid-fluid interface. As the diffusion coefficient at low densities can be accurately determined by the molecular flow model, we also consider a model where the slip condition is supplied by the molecular flow model. We find that both density-dependent models provide a useful means of estimating the transport coefficient that compares well with simulation. (C) 2004 American Institute of Physics.
Resumo:
We present a tractable theory of transport of simple fluids in cylindrical nanopores, considering trajectories of molecules between diffuse wall collisions at low-density, and including viscous flow contributions at higher densities. The model is validated through molecular dynamics simulations of supercritical methane transport, over a wide range of conditions. We find excellent agreement between model and simulation at low to medium densities. However, at high densities the model tends to over-predict the transport behaviour, due to a large decrease in surface slip that is not well represented by the model. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores.
Resumo:
We examine here the relative importance of different contributions to transport of light gases in single walled carbon nanotubes, using methane and hydrogen as examples. Transport coefficients at 298 K are determined using molecular dynamics simulation with atomistic models of the nanotube wall, from which the diffusive and viscous contributions are resolved using a recent approach that provides an explicit expression for the latter. We also exploit an exact theory for the transport of Lennard-Jones fluids at low density considering diffuse reflection at the tube wall, thereby permitting the estimation of Maxwell coefficients for the wall reflection. It is found that reflection from the carbon nanotube wall is nearly specular, as a result of which slip flow dominates, and the viscous contribution is small in comparison, even for a tube as large as 8.1 nm in diameter. The reflection coefficient for hydrogen is 3-6 times as large as that for methane in tubes of 1.36 nm diameter, indicating less specular reflection for hydrogen and greater sensitivity to atomic detail of the surface. This reconciles results showing that transport coefficients for hydrogen and methane, obtained in simulation, are comparable in tubes of this size. With increase in adsorbate density, the reflection coefficient increases, suggesting that adsorbate interactions near the wall serve to roughen the local potential energy landscape perceived by fluid molecules.
Resumo:
It is a common approximation in the modeling of adsorption in microporous carbons to treat the pores as slit pores, whose walls are considered to consist of an infinite number of graphitic layers. In practice, such an approximation is appropriate as long as the number of graphitic layers in the wall is greater than three. However, it is understood that pore walls in microporous carbons commonly consist of three or fewer layers. As well as affecting the solid-fluid interaction within a pore, such narrow walls permit the interaction of fluid molecules through the wall, with consequences for the adsorption characteristics. We consider the effect that a distributed pore-wall thickness model can have on transport properties. At low density we find that the only significant deviation in the transport properties from the infinite pore-wall thickness model occurs in pores with single-layer walls. For a model of activated carbons with a distribution of pore widths and pore-wall thicknesses, the transport properties are generally insensitive to the effects of finite walls, in terms of both the solid-fluid interaction within a pore and fluid-fluid interaction through the pore walls.