2 resultados para Transition probabilities

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The Lescol Intervention Prevention Study (LIPS) was a multinational randomized controlled trial that showed a 47% reduction in the relative risk of cardiac death and a 22% reduction in major adverse cardiac events (MACEs) from the routine use of fluvastatin, compared with controls, in patients undergoing percutaneous coronary intervention (PCI, defined as angioplasty with or without stents). In this study, MACEs included cardiac death, nonfatal myocardial infarction, and subsequent PCI and coronary artery bypass graft. Diabetes was the greatest risk factor for MACEs. Objective: This study estimated the cost-effectiveness of fluvastatin when used for secondary prevention of MACEs after PCI in people with diabetes. Methods: A post hoc subgroup analysis of patients with diabetes from the LIPS was used to estimate the effectiveness of fluvastatin in reducing myocardial infarction, revascularization, and cardiac death. A probabilistic Markov model was developed using United Kingdom resource and cost data to estimate the additional costs and quality-adjusted life-years (QALYs) gained over 10 years from the perspective of the British National Health Service. The model contained 6 health states, and the transition probabilities were derived from the LIPS data. Crossover from fluvastatin to other lipid-lowering drugs, withdrawal from fluvastatin, and the use of lipid-lowering drugs in the control group were included. Results: In the subgroup of 202 patients with diabetes in the LIPS trial, 18 (15.0%) of 120 fluvastatin patients and 21 (25.6%) of 82 control participants were insulin dependent (P = NS). Compared with the control group, patients treated with fluvastatin can expect to gain an additional mean (SD) of 0.196 (0.139) QALY per patient over 10 years (P < 0.001) and will cost the health service an additional mean (SD) of 10 (E448) (P = NS) (mean [SD] US $16 [$689]). The additional cost per QALY gained was;(51 (US $78). The key determinants of cost-effectiveness included the probabilities of repeat interventions, cardiac death, the cost of fluvastatin, and the time horizon used for the evaluation. Conclusion: Fluvastatin was an economically efficient treatment to prevent MACEs in these patients with diabetes undergoing PCI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The XSophe computer simulation software suite consisting of a daemon, the XSophe interface and the computational program Sophe is a state of the art package for the simulation of electron paramagnetic resonance spectra. The Sophe program performs the computer simulation and includes a number of new technologies including; the SOPHE partition and interpolation schemes, a field segmentation algorithm, homotopy, parallelisation and spectral optimisation. The SOPHE partition and interpolation scheme along with a field segmentation algorithm greatly increases the speed of simulations for most systems. Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence tracing transitions in the presence of energy level anticrossings and looping transitions and allowing computer simulations in frequency space. Recent enhancements to Sophe include the generalised treatment of distributions of orientational parameters, termed the mosaic misorientation linewidth model and a faster more efficient algorithm for the calculation of resonant field positions and transition probabilities. For complex systems the parallelisation enables the simulation of these systems on a parallel computer and the optimisation algorithms in the suite provide the experimentalist with the possibility of finding the spin Hamiltonian parameters in a systematic manner rather than a trial-and-error process. The XSophe software suite has been used to simulate multifrequency EPR spectra (200 MHz to 6 00 GHz) from isolated spin systems (S > ~½) and coupled centres (Si, Sj _> I/2). Griffin, M.; Muys, A.; Noble, C.; Wang, D.; Eldershaw, C.; Gates, K.E.; Burrage, K.; Hanson, G.R."XSophe, a Computer Simulation Software Suite for the Analysis of Electron Paramagnetic Resonance Spectra", 1999, Mol. Phys. Rep., 26, 60-84.