26 resultados para Train scheduling
em University of Queensland eSpace - Australia
Resumo:
Negative mood states are credited to exacerbate excessive drinking among problem drinkers. We developed an emotional cue exposure treatment procedure and applied it to three problem drinkers who have a history of drinking excessively under stressful emotional states. All three preferred a controlled drinking goal and received an average of seven sessions of treatment. Treatment comprised of providing alcohol (priming doses), followed by negative mood induction and response prevention of further drinking. Reductions were observed in the quantity and frequency of drinking, the Beck Depression Inventory, the Severity of Alcohol Dependence Questionnaire (Form C) and the Impaired Control Questionnaire scores. Increments were observed in self-efficacy to face different difficult situations. These gains were maintained at the 6-month follow-up. Providing alcohol to problem drinkers in treatment, followed by negative mood induction and response prevention, is clinically feasible and may benefit clients who drink under a variety of stressful mood states. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
The expectation-maximization (EM) algorithm has been of considerable interest in recent years as the basis for various algorithms in application areas of neural networks such as pattern recognition. However, there exists some misconceptions concerning its application to neural networks. In this paper, we clarify these misconceptions and consider how the EM algorithm can be adopted to train multilayer perceptron (MLP) and mixture of experts (ME) networks in applications to multiclass classification. We identify some situations where the application of the EM algorithm to train MLP networks may be of limited value and discuss some ways of handling the difficulties. For ME networks, it is reported in the literature that networks trained by the EM algorithm using iteratively reweighted least squares (IRLS) algorithm in the inner loop of the M-step, often performed poorly in multiclass classification. However, we found that the convergence of the IRLS algorithm is stable and that the log likelihood is monotonic increasing when a learning rate smaller than one is adopted. Also, we propose the use of an expectation-conditional maximization (ECM) algorithm to train ME networks. Its performance is demonstrated to be superior to the IRLS algorithm on some simulated and real data sets.
Resumo:
In electronic support, receivers must maintain surveillance over the very wide portion of the electromagnetic spectrum in which threat emitters operate. A common approach is to use a receiver with a relatively narrow bandwidth that sweeps its centre frequency over the threat bandwidth to search for emitters. The sequence and timing of changes in the centre frequency constitute a search strategy. The search can be expedited, if there is intelligence about the operational parameters of the emitters that are likely to be found. However, it can happen that the intelligence is deficient, untrustworthy or absent. In this case, what is the best search strategy to use? A random search strategy based on a continuous-time Markov chain (CTMC) is proposed. When the search is conducted for emitters with a periodic scan, it is shown that there is an optimal configuration for the CTMC. It is optimal in the sense that the expected time to intercept an emitter approaches linearity most quickly with respect to the emitter's scan period. A fast and smooth approach to linearity is important, as other strategies can exhibit considerable and abrupt variations in the intercept time as a function of scan period. In theory and numerical examples, the optimum CTMC strategy is compared with other strategies to demonstrate its superior properties.
Resumo:
The study examines whether error exposure training can enhance adaptive performance. Fifty-nine experienced fire-fighters undergoing training for incident command participated in the study. War stories were developed based on real events to illustrate successful and unsuccessful incident command decisions. Two training methodologies were compared and evaluated. One group was trained using case studies that depicted incidents containing errors of management with severe consequences in fire-fighting outcomes (error-story training) while a second group was exposed to the same set of case studies except that the case studies depicted the incidents being managed without errors and their consequences (errorless-story training). The results provide some support for the hypothesis that it is better to learn from other people's errors than from their successes. Implications for training are discussed.
Resumo:
This paper presents a new multi-depot combined vehicle and crew scheduling algorithm, and uses it, in conjunction with a heuristic vehicle routing algorithm, to solve the intra-city mail distribution problem faced by Australia Post. First we describe the Australia Post mail distribution problem and outline the heuristic vehicle routing algorithm used to find vehicle routes. We present a new multi-depot combined vehicle and crew scheduling algorithm based on set covering with column generation. The paper concludes with a computational investigation examining the affect of different types of vehicle routing solutions on the vehicle and crew scheduling solution, comparing the different levels of integration possible with the new vehicle and crew scheduling algorithm and comparing the results of sequential versus simultaneous vehicle and crew scheduling, using real life data for Australia Post distribution networks.
Resumo:
This paper describes an experiment in designing, implementing and testing a Transport layer cluster scheduling and dispatching architecture. The motivation for the experiment was the hypothesis that a Transport layer clustering solution may offer advantantages over the existing industry-standard Network layer and Data Link Layer approaches. The critical success factors initially established to guide and evaluate the experiment were reduced dispatcher work load, reduced dispatcher internal state memory requirements, distributed denial of service resilience, and cluster software design simplicity. The functional design stage of the experiment produced a Transport layer strategy for scheduling and load balancing based on the specification of two new TCP options. Implementation required the introduction of the newly specified TCP options into the Linux (2.4) kernel. The implementation produced an extended Linux Socket API to facilitate user-process access to the additional TCP capability. The testing stage of the experiment confirmed the operational efficiency of the solution.
Resumo:
This paper reports on a current research project in which virtual reality simulators are being investigated as a means of simulating hazardous Rail work conditions in order to allow train drivers to practice decision-making under stress. When working under high stress conditions train drivers need to move beyond procedural responses into a response activated through their own problem-solving and decision-making skills. This study focuses on the use of stress inoculation training which aims to build driver’s confidence in the use of new decision-making skills by being repeatedly required to respond to hazardous driving conditions. In particular, the study makes use of a train cab driving simulator to reproduce potentially stress inducing real-world scenarios. Initial pilot research has been undertaken in which drivers have experienced the training simulation and subsequently completed surveys on the level of immersion experienced. Concurrently drivers have also participated in a velocity perception experiment designed to objectively measure the fidelity of the virtual training environment. Baseline data, against which decision-making skills post training will be measured, is being gathered via cognitive task analysis designed to identify primary decision requirements for specific rail events. While considerable efforts have been invested in improving Virtual Reality technology, little is known about how to best use this technology for training personnel to respond to workplace conditions in the Rail Industry. To enable the best use of simulators for training in the Rail context the project aims to identify those factors within virtual reality that support required learning outcomes and use this information to design training simulations that reliably and safely train staff in required workplace accident response skills.