6 resultados para Traffic Model

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Operator Choice Model (OCM) was developed to model the behaviour of operators attending to complex tasks involving interdependent concurrent activities, such as in Air Traffic Control (ATC). The purpose of the OCM is to provide a flexible framework for modelling and simulation that can be used for quantitative analyses in human reliability assessment, comparison between human computer interaction (HCI) designs, and analysis of operator workload. The OCM virtual operator is essentially a cycle of four processes: Scan Classify Decide Action Perform Action. Once a cycle is complete, the operator will return to the Scan process. It is also possible to truncate a cycle and return to Scan after each of the processes. These processes are described using Continuous Time Probabilistic Automata (CTPA). The details of the probability and timing models are specific to the domain of application, and need to be specified using domain experts. We are building an application of the OCM for use in ATC. In order to develop a realistic model we are calibrating the probability and timing models that comprise each process using experimental data from a series of experiments conducted with student subjects. These experiments have identified the factors that influence perception and decision making in simplified conflict detection and resolution tasks. This paper presents an application of the OCM approach to a simple ATC conflict detection experiment. The aim is to calibrate the OCM so that its behaviour resembles that of the experimental subjects when it is challenged with the same task. Its behaviour should also interpolate when challenged with scenarios similar to those used to calibrate it. The approach illustrated here uses logistic regression to model the classifications made by the subjects. This model is fitted to the calibration data, and provides an extrapolation to classifications in scenarios outside of the calibration data. A simple strategy is used to calibrate the timing component of the model, and the results for reaction times are compared between the OCM and the student subjects. While this approach to timing does not capture the full complexity of the reaction time distribution seen in the data from the student subjects, the mean and the tail of the distributions are similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments with simulators allow psychologists to better understand the causes of human errors and build models of cognitive processes to be used in human reliability assessment (HRA). This paper investigates an approach to task failure analysis based on patterns of behaviour, by contrast to more traditional event-based approaches. It considers, as a case study, a formal model of an air traffic control (ATC) system which incorporates controller behaviour. The cognitive model is formalised in the CSP process algebra. Patterns of behaviour are expressed as temporal logic properties. Then a model-checking technique is used to verify whether the decomposition of the operator's behaviour into patterns is sound and complete with respect to the cognitive model. The decomposition is shown to be incomplete and a new behavioural pattern is identified, which appears to have been overlooked in the analysis of the data provided by the experiments with the simulator. This illustrates how formal analysis of operator models can yield fresh insights into how failures may arise in interactive systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to examine the way Australian air traffic controllers manage their airspace. Fourteen controllers ranging from 7 to 30 years experience were sampled from the Brisbane air traffic control centre. All had previously been endorsed for en route radar sectors. Five static pictures varying in workload level (low, medium and high) were presented to participants. Controllers were asked to work through the scenarios and describe aloud how they would resolve any potential conflicts between the aircraft. Following this controllers were asked a set of probe questions based on the critical decision method, to extract further information about the way they manage their airspace. A content analysis was used to assess patterns in the way controllers scan, strategies used in conflict detection and conflict resolution and the effect of workload on strategy choice. Findings revealed that controllers use specific strategies (such as working in a left to right scan or prioritising levels) when managing their airspace. Further analyses are still planned however a model based on the processes controllers used to resolve conflicts has been developed and will be presented as a summary of the results.