202 resultados para Topological graph theory.
em University of Queensland eSpace - Australia
Resumo:
This work formulates existence theorems for solutions to two-point boundary value problems on time scales. The methods used include maximum principles, a priori bounds and topological degree theory.
Resumo:
The skyrmions in SU(N) quantum Hall (QH) system are discussed. By analyzing the gauge field structure and the topological properties of this QH system it is pointed out that in the SU(N) QH system there can exist (N-1) types of skyrmion structures, instead of only one type of skyrmions. In this paper, by means of the Abelian projections according to the (N-1) Cartan subalgebra local bases, we obtain the (N-1) U(1) electromagnetic field tensors in the SU(N) gauge field of the QH system, and then derive (N-1) types of skyrmion structures from these U(1) sub-field tensors. Furthermore, in light of the phi-mapping topological current method, the topological charges and the motion of these skyrmions are also discussed.
Resumo:
Electronic communications devices intended for government or military applications must be rigorously evaluated to ensure that they maintain data confidentiality. High-grade information security evaluations require a detailed analysis of the device's design, to determine how it achieves necessary security functions. In practice, such evaluations are labour-intensive and costly, so there is a strong incentive to find ways to make the process more efficient. In this paper we show how well-known concepts from graph theory can be applied to a device's design to optimise information security evaluations. In particular, we use end-to-end graph traversals to eliminate components that do not need to be evaluated at all, and minimal cutsets to identify the smallest group of components that needs to be evaluated in depth.
Resumo:
This paper proposes three models of adding relations to an organization structure which is a complete K-ary tree of height H: (i) a model of adding an edge between two nodes with the same depth N, (ii) a model of adding edges between every pair of nodes with the same depth N and (iii) a model of adding edges between every pair of siblings with the same depth N. For each of the three models, an optimal depth N* is obtained by maximizing the total shortening path length which is the sum of shortening lengths of shortest paths between every pair of all nodes. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.
Resumo:
We analyze the properties of light beams carrying phase singularities, or optical vortices. The transformations of topological charge during free-space propagation of a light wave, which is a combination of a Gaussian beam and a multiple charged optical vortex within a Gaussian envelope, are studied both in theory and experiment. We revise the existing knowledge about topological charge conservation, and demonstrate possible scenarios where additional vortices appear or annihilate during free propagation of such a combined beam. Coaxial interference of optical vortices is also analyzed, and the general rule for angular-momentum density distribution in a combined beam is established. We show that, in spite of any variation in the number of vortices in a combined beam, the total angular momentum is constant during the propagation. [S1050-2947(97)09910-1].
Resumo:
A k-star is the graph K-1,K-k. We prove a general theorem about k-star factorizations of Cayley graphs. This is used to give necessary and sufficient conditions for the existence of k-star factorizations of any power (K-q)(S) of a complete graph with prime power order q, products C-r1 x C-r2 x ... x C-rk of k cycles of arbitrary lengths, and any power (C-r)(S) of a cycle of arbitrary length. (C) 2001 John Wiley & Sons, Inc.
Resumo:
In this paper, we show that K-10n can be factored into alpha C-5-factors and beta 1-factors for all non-negative integers alpha and beta satisfying 2alpha + beta = 10(n) - 1.
Resumo:
Following the original analysis Of Zhang and Hu for the 4-dimensional generalization of Quantum Hall effect, there has been much work from different viewpoints on the higher dimensional condensed matter systems. In this paper, we discuss three kinds of topological excitations in the SO(4) gauge field of condensed matter systems in 4-dimension-the instantons and anti-instantons, the 't Hooft-Polyakov monopoles, and the 2-membranes. Using the phi-mapping topological theory, it is revealed that there are 4-, 3-, and 2-dimensional topological currents inhering in the SO (4) gauge field, and the above three kinds of excitations can be directly and explicitly derived from these three kinds of currents, respectively. Moreover, it is shown that the topological charges of these excitations are characterized by the Hopf indices and Brouwer degrees of phi-mapping. (c) 2005 Elsevier Inc. All rights reserved.