20 resultados para Topological Construct
em University of Queensland eSpace - Australia
Resumo:
Summarizing topological relations is fundamental to many spatial applications including spatial query optimization. In this article, we present several novel techniques to effectively construct cell density based spatial histograms for range (window) summarizations restricted to the four most important level-two topological relations: contains, contained, overlap, and disjoint. We first present a novel framework to construct a multiscale Euler histogram in 2D space with the guarantee of the exact summarization results for aligned windows in constant time. To minimize the storage space in such a multiscale Euler histogram, an approximate algorithm with the approximate ratio 19/12 is presented, while the problem is shown NP-hard generally. To conform to a limited storage space where a multiscale histogram may be allowed to have only k Euler histograms, an effective algorithm is presented to construct multiscale histograms to achieve high accuracy in approximately summarizing aligned windows. Then, we present a new approximate algorithm to query an Euler histogram that cannot guarantee the exact answers; it runs in constant time. We also investigate the problem of nonaligned windows and the problem of effectively partitioning the data space to support nonaligned window queries. Finally, we extend our techniques to 3D space. Our extensive experiments against both synthetic and real world datasets demonstrate that the approximate multiscale histogram techniques may improve the accuracy of the existing techniques by several orders of magnitude while retaining the cost efficiency, and the exact multiscale histogram technique requires only a storage space linearly proportional to the number of cells for many popular real datasets.
Resumo:
Summarizing topological relations is fundamental to many spatial applications including spatial query optimization. In this paper, we present several novel techniques to eectively construct cell density based spatial histograms for range (window) summarizations restricted to the four most important topological relations: contains, contained, overlap, and disjoint. We rst present a novel framework to construct a multiscale histogram composed of multiple Euler histograms with the guarantee of the exact summarization results for aligned windows in constant time. Then we present an approximate algorithm, with the approximate ratio 19/12, to minimize the storage spaces of such multiscale Euler histograms, although the problem is generally NP-hard. To conform to a limited storage space where only k Euler histograms are allowed, an effective algorithm is presented to construct multiscale histograms to achieve high accuracy. Finally, we present a new approximate algorithm to query an Euler histogram that cannot guarantee the exact answers; it runs in constant time. Our extensive experiments against both synthetic and real world datasets demonstrated that the approximate mul- tiscale histogram techniques may improve the accuracy of the existing techniques by several orders of magnitude while retaining the cost effciency, and the exact multiscale histogram technique requires only a storage space linearly proportional to the number of cells for the real datasets.
Resumo:
Background & objectives: To develop a broad strain coverage GAS vaccine, several strategies have been investigated which included multi-epitope approaches as well as targeting the M protein conserved C-region. These approaches, however, have relied on the use of adjuvants that are toxic for human application. The development of safe and effective adjuvants for human use is a key issue in the development of effective vaccines. In this study, we investigated the lipid polylysine core peptide (LCP) system as a self-adjuvanting GAS vaccine delivery approach. Methods: An LCP-GAS construct was synthesised incorporating multiple copies of a protective peptide epitope (J8) from the conserved carboxy terminal C-repeat region of the M protein. B10.BR mice were immunized parenterally with the LCP-J8 construct, with or without conventional adjuvant, prior to the assessment of immunogenicity and the induction of serum opsonic antibodies. Results: Our data demonstrated immunogenicity of LCP-J8 when coadministered in complete Freund's adjuvant (CFA), or administered in the absence of conventional adjuvant. In both cases, immunization led to the induction of high-titre J8 peptide-specific serum IgG antibody responses, and the induction of heterologous opsonic antibodies that did not cross-react with human heart tissue proteins. Interpretation & conclusion: These data indicated the potential of a novel self-adjuvanting LCP vaccine delivery system incorporating a synthetic GAS M protein C-region peptide immunogen in the induction of broadly protective immune responses, and pointed to the potential application of this system in human vaccine development against infectious diseases.
Resumo:
The measurement of alcohol craving began with single-item scales. Multifactorial scales developed with the intention to capture more fully the phenomenon of craving. This study examines the construct validity of a multifactorial scale, the Yale-Brown Obsessive Compulsive Scale for heavy drinking (Y-BOCS-hd). The study compares its clinical utility with a single item visual-analogue craving scale. The study includes 212 alcohol dependent subjects (127 males, 75 females) undertaking an outpatient treatment program between 1999-2001. Subjects completed the Y-BOCS-hd and a single item visual-analogue scale, in addition to alcohol consumption and dependence severity measures. The Y-BOCS-hd had strong construct validity. Both the visual-analogue alcohol craving scale and Y-BOCS-hd were weakly associated with pretreatment dependence severity. There was a significant association between pretreatment alcohol consumption and the visual-analogue craving scale. Neither craving measure was able to predict total program abstinence or days abstinent. The relationship between obsessive-compulsive behavior in alcohol dependence and craving remains unclear.
Resumo:
Following the original analysis Of Zhang and Hu for the 4-dimensional generalization of Quantum Hall effect, there has been much work from different viewpoints on the higher dimensional condensed matter systems. In this paper, we discuss three kinds of topological excitations in the SO(4) gauge field of condensed matter systems in 4-dimension-the instantons and anti-instantons, the 't Hooft-Polyakov monopoles, and the 2-membranes. Using the phi-mapping topological theory, it is revealed that there are 4-, 3-, and 2-dimensional topological currents inhering in the SO (4) gauge field, and the above three kinds of excitations can be directly and explicitly derived from these three kinds of currents, respectively. Moreover, it is shown that the topological charges of these excitations are characterized by the Hopf indices and Brouwer degrees of phi-mapping. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Constructing quality assessment rubrics can be challenging, especially when they are used for integrated, group-centered, applied learning. We describe a collaborative assessment task in which groups of second-year dentistry students developed a complex concept map. In groups of four, the students were given a written, simulated, medical history of a patient and required to construct a concept map illustrating relevant pathophysiological concepts and pharmacological interventions. This report describes a research project aimed at making educational goals of the task more explicit through investigating student and faculty member understandings of the criteria that might be used to assess the concept map. Information was gathered about the perceptions of students in relation to the learning goals associated with the task. These were compared with faculty member perceptions. The findings were used to develop an assessment rubric intended to be more accessible to learners. The new rubric used the language of both faculty members and students to more clearly represent expectations of each criterion and standard. This assessment rubric will be used in 2005 for the next phase of the project.
Resumo:
beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi 2, psi 2, phi 3 and psi 3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C-alpha-C-beta vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C-alpha-C-beta vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.
Resumo:
Conotoxins, disulfide-rich peptides from the venom of cone snails, have created much excitement over recent years due to their potency and specificity for ion channels and their therapeutic potential. One recently identified conotoxin, MrIA, a 13-residue member of the chi-conotoxin family, inhibits the human norepinephrine transporter (NET) and has potential applications in the treatment of pain. In the current study, we show that the, beta-hairpin structure of native MrIA is retained in a synthetic cyclic version, as is biological activity at the NET. Furthermore, the cyclic version has increased resistance to trypsin digestion relative to the native peptide, an intriguing result because the cleavage site for the trypsin is not close to the cyclization site. The use of peptides as drugs is generally hampered by susceptibility to proteolysis, and so, the increase in enzymatic stability against trypsin observed in the current study may be useful in improving the therapeutic potential of MrIA. Furthermore, the structure reported here for cyclic MrIA represents a new topology among a growing number of circular disulfide-rich peptides.
Resumo:
The purpose of this study was to investigate the effects of three different weight training protocols, that varied in the way training volume was measured, on acute muscular fatigue. Ten resistance-trained males performed all three protocols which involved dynamic constant resistance exercise of the elbow flexors. Protocol A provided a standard for the time the muscle group was under tension (TUT) and volume load (VL), expressed as the product of the total number of repetitions and the load that was lifted. Protocol B involved 40% of the TUT but the same VL compared to protocol A; protocol C was equated with protocol A for TUT but only involved 50% of the VL. Fatigue was assessed by changes in maximum voluntary isometric force and integrated electromyography (iEMG) between the pre- and post-training protocols. The results of the study showed that, when equated for VL, greater TUT produced greater overall muscular fatigue ( p