176 resultados para Tnf Family-member
em University of Queensland eSpace - Australia
Resumo:
The AP-2 transcription factor family is presumed to play an important role in the regulation of the keratinocyte squamous differentiation program; however, limited functional data are available to support this. In the present study, the activity and regulation of AP-2 were examined in differentiating human epidermal keratinocytes. We report that (1) AP-2 transcriptional activity decreases in differentiated keratinocytes but remains unchanged in differentiation-insensitive squamous cell carcinoma cell lines, (2) diminished AP-2 transcriptional activity is associated with a loss of specific DNA-bound AP-2 complexes, and (3) there is an increase in the ability of cytoplasmic extracts, derived from differentiated keratinocytes, to phosphorylate AP-2alpha and AP-2beta when cells differentiate. In contrast, extracts from differentiation-insensitive squamous cell carcinoma cells are unable to phosphorylate AP-2 proteins. Finally, the phosphorylation of recombinant AP-2alpha by cytosolic extracts from differentiated keratinocytes is associated with decreased AP-2 DNA-binding activity. Combined, these data indicate that AP-2 trans-activation and DNA-binding activity decrease as keratinocytes differentiate, and that this decreased activity is associated with an enhanced ability to phosphorylate AP-2alpha and beta.
Resumo:
Hemopoietic cells, apparently committed to one lineage, can be reprogrammed to display the phenotype of another lineage. The J2E erythroleukemic cell line has on rare occasions developed the features of monocytic cells. Subtractive hybridization was used in an attempt to identify genes that were up-regulated during this erythroid to myeloid transition. We report here on the isolation of hemopoietic lineage switch 5 (Hls5), a gene expressed by the monocytoid variant cells, but not the parental J2E cells. Hls5 is a novel member of the RBCC (Ring finger, B box, coiled-coil) family of genes, which includes Pml, Herf1, Tif-1alpha, and Rfp. Hls5 was expressed in a wide range of adult tissues; however, at different stages during embryogenesis, Hls5 was detected in the branchial arches, spinal cord, dorsal root ganglia, limb buds, and brain. The protein was present in cytoplasmic granules and punctate nuclear bodies. Isolation of the human cDNA and genomic DNA revealed that the gene was located on chromosome 8p21, a region implicated in numerous leukemias and solid tumors. Enforced expression of Hls5 in HeLa cells inhibited cell growth, clonogenicity, and tumorigenicity. It is conceivable that HLS5 is one of the tumor suppressor genes thought to reside at the 8p21 locus.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.
Resumo:
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis, In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2, The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells, Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in decoy receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cell.
Resumo:
The Sp/KLF transcription factors perform a variety of biological functions, but are related in that they bind GC-box and CACCC-box sequences in DNA via a highly conserved DNA-binding domain. A database homology search, using the zinc finger DNA-binding domain characteristic of the family, has identified human KLF17 as a new family member that is most closely related to KLFs 1-8 and 12. KLF17 appears to be the human orthologue of the previously reported mouse gene, zinc finger protein 393 (Zfp393), although it has diverged significantly. The DNA-binding domain is the most conserved region, suggesting that both the murine and the human forms recognize the same binding sites in DNA and may retain similar functions. We show that human KLF17 can bind G/C-rich sites via its zinc fingers and is able to activate transcription from CACCC-box elements. This is the first report of the DNA-binding characteristics and transactivation activity of human KLF17, which, together with the homology it displays to other KLF proteins, put it in the Sp/KLF family. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
At a time of the emergence of drug-resistant bacterial strains, the development of antimicrobial compounds with novel mechanisms of action is of considerable interest. Perhaps the most promising among these is a family of antibacterial peptides originally isolated from insects. These were shown to act in a stereospecific manner on an as-yet unidentified target bacterial protein. One of these peptides, drosocin, is inactive in vivo due to the rapid decomposition in mammalian sera. However, another family member, pyrrhocoricin, is significantly more stable, has increased in vitro efficacy against Gram-negative bacterial strains, and if administered alone, as we show here, is devoid of in vitro or in vivo toxicity. At low doses, pyrrhocoricin protected mice against Escherichia call infection, but at a higher dose augmented the infection of compromised animals. Analogs of pyrrhocoricin were, therefore, synthesized to further improve protease resistance and reduce toxicity. A linear derivative containing unnatural amino acids at both termini showed high potency and lack of toxicity in vivo and an expanded cyclic analog displayed broad activity spectrum in vitro. The bioactive conformation of native pyrrhocoricin was determined by nuclear magnetic resonance spectroscopy, and similar to drosocin, reverse turns were identified as pharmacologically important elements at the termini, bridged by an extended peptide domain. Knowledge of the primary and secondary structural requirements for in vivo activity of these peptides allows the design of novel antibacterial drug leads.
Resumo:
Various members of the bZip and bHLH-Zip families of eukaryotic transcription factors, including Jun, Fos, and Myc, have been identified as oncoproteins; mutation or deregulated expression of these proteins leads to certain types of cancer. These proteins can only bind to their cognate DNA enhancer sites following homodimerization, or heterodimerization with another family member, via their leucine zipper domain. Thus, a novel anticancer strategy would be to inhibit dimerization of these proteins, thereby blocking their DNA binding and transactivation functions. In this paper we show that it is possible to rationally design leucine zipper peptides that bind with high affinity to the leucine zipper dimerization domains of c-Jun and c-Fos, thus preventing the formation of functional c-Jun homodimers and c-Jun:c-Fos heterodimers; we refer to such peptides as superzippers (SZs). In vivo, c-Jun:SZ and c-Fos:SZ heterodimers should be nonfunctional as they lack one of the two basic domains that are essential for DNA binding. While the transport of a peptidic agent into cells often poses a severe obstacle to its therapeutic use, we show that a 46-residue leucine zipper peptide can be transported into HeLa cells by coupling it to a 17-residue carrier peptide from the Antennapedia homeodomain, thus paving the way for detailed studies of the therapeutic potential of superzipper peptides.
Resumo:
Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or indeterminate 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition. (C) 2001 Wiley-Liss, Inc.
Resumo:
The specification of the erythroid lineage from hematopoietic stem cells requires the expression and activity of lineage-specific transcription factors. One transcription factor family that has several members involved in hematopoiesis is the Kruppel-like factor (KLF) family [1]. For example, erythroid KLF (EKLF) regulates beta -globin expression during erythroid differentiation [2-6]. KLFs share a highly conserved zinc finger-based DNA binding domain (DBD) that mediates binding to CACCC-box and GC-rich sites, both of which are frequently found in the promoters of hematopoietic genes. Here, we identified a novel Xenopus KLF gene, neptune, which is highly expressed in the ventral blood island (VBI), cranial ganglia, and hatching and cement glands. neptune expression is induced in response to components of the BMP-4 signaling pathway in injected animal cap explants. Similar to its family member, EKLF, Neptune can bind CACCC-box and GC-rich DNA elements. We show that Neptune cooperates with the hematopoietic transcription factor XGATA-1 to enhance globin induction in animal cap explants. A fusion protein comprised of Neptune's DBD and the Drosophila engrailed repressor domain suppresses the induction of globin in ventral marginal zones and in animal caps. These studies demonstrate that Neptune is a positive regulator of primitive erythropoiesis in Xenopus.
Resumo:
Previously, we reported the presence of dual promoters, referred to as distal (DP) and proximal, with a negative regulatory element between them in the mouse mu -opioid receptor (mor) gene. Here we have identified a positive regulatory element influencing mor DP transcription, which contains multiple consensus binding motifs for Sox factors (sex-determining Sry-like high mobility group box-containing genes). In gel supershift assays, the Sox family member Sox18 bound directly to the multiple Sox consensus binding motifs of the mor DP enhancer. Overexpression of Sox18 cDNA increased luciferase activity regulated by the mor DP, and did so in a Sox18 concentration-dependent manner. In contrast, overexpression of another Sox member, Sox5, triggered no such trans-activation of mor DP-driven luciferase activity or DNA-protein binding activity. These results suggest that Sox18 directly and specifically stimulates mor gene expression, by trans-activating the mor DP enhancer.
Resumo:
We identified a novel human AMP-activated protein kinase (AMPK) family member, designated ARK5, encoding 661 amino acids with an estimated molecular mass of 74 kDa. The putative amino acid sequence reveals 47, 45.8, 42.4, and 55% homology to AMPK-alpha1, AMPK-alpha2, MELK and SNARE respectively, suggesting that it is a new member of the AMPK family. It has a putative Akt phosphorylation motif at amino acids 595600, and Ser(600) was found to be phosphorylated by active Akt resulting in the activation of kinase activity toward the SAMS peptide, a consensus AMPK substrate. During nutrient starvation, ARK5 supported the survival of cells in an Akt-dependent manner. In addition, we also demonstrated that ARK5, when activated by Akt, phosphorylated the ATM protein that is mutated in the human genetic disorder ataxia-telangiectasia and also induced the phosphorylation of p53. On the basis of our current findings, we propose that a novel AMPK family member, ARK5, is the tumor cell survival factor activated by Akt and acts as an ATM kinase under the conditions of nutrient starvation.
Resumo:
Objective: To examine the association between gain in motor and cognitive functional status with patient satisfaction 3-6 mo after rehabilitation discharge. Design: Patient satisfaction and changes in functional status were examined in 18,375 patients with stroke who received inpatient medical rehabilitation. Information was obtained from 144 hospitals and rehabilitation facilities contributing records to the Uniform Data System for Medical Rehabilitation and the National Follow-up Services. Results: Data analysis revealed significant (P < 0.05) differences in satisfaction responses based on whether information was collected from patient self-report or from a family member proxy, and the two subsets were analyzed separately. Logistic regression revealed the following significant predictors of satisfaction for data collected from stroke patients: cognitive and motor gain, rehospitalization, who the patient was living with at follow-up, age, and follow-up therapy. In the patient-reported data subset, compared with patients who showed improved cognitive or motor functional status, those with no change, respectively, had a 31% and 33% reduced risk of dissatisfaction. In addition, rehospitalized patients had a higher risk of dissatisfaction. For the proxy reported data subset, significant influences on satisfaction were health maintenance, rehospitalization, stroke type, ethnicity, cognitive FIM(TM) gain, length of stay, and follow-up therapy. Conclusions: Ratings of satisfaction with rehabilitation services were affected by change in functional status and whether the information was collected from patient rating or proxy response.
Resumo:
Since deinstitutionalisation, parents of adults with mental disorders are increasingly utilised as a resource for their relatives’ care. This study used a general phenomenological perspective to capture people’s experiences. Semi-structured in-depth interviews were conducted with eight parents who were members of the Schizophrenia Fellowship of Southern Queensland to explore their perceptions of their psychoeducation needs. The themes that emerged included the usefulness of past experiences with psychoeducation, educational needs, barriers to accessing information and support, and other unmet carer needs, including the need for managing stress and emotional needs, recognition and inclusion of family members in decision-making, and negotiating the best care for their family member within the health care system. This study adds to an increasing body of knowledge that advocates for the greater inclusion and involvement of families in the care and treatment of their relatives. Further research into the needs of families, in particular barriers and supports in accessing information and services, is recommended.
Resumo:
Investigations into pigment cell biology have relied on the ability to culture both murine and human melanocytes, numerous melanoma cell lines and more recently, murine and human melanoblasts. Melanoblast culture requires medium supplemented with a range of growth factors including Stem Cell Factor, Endothelin-3 and Fibroblast Growth Factor-2, withdrawal of which causes the cells to differentiate into melanocytes. Using the human melanoblast culture system, we have now examined the expression and/or DNA binding activity of several transcription factors implicated in melanocytic development and differentiation. Of these, the POU domain factor BRN2 and the SOX family member SOX10 are both highly expressed in unpigmented melanocyte precursors but are down-regulated upon differentiation. In contrast, the expression levels of the previously described MITF and PAX3 transcription factors remain relatively constant during the melanoblast-melanocyte transition. Moreover, BRN2 ablated melanoma cells lack expression of SOX10 and MITF but retain PAX3. A novel finding implicates a second SOX protein, SOX9, as a potential melanogenic transcriptional regulator, as its expression level is increased following the down-regulation of BRN2 and SOX10 in differentiated melanoblasts. Our results suggest that a complex network of transcription factor interactions requiring proper temporal coordination is necessary for acquisition and maintenance of the melanocytic phenotype. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Aim. This paper reports a study to examine the effectiveness of a 12-session mutual support group for Chinese families caring for a relative with schizophrenia compared with a psycho-educational group and routine family support services in Hong Kong. Background. Schizophrenia is a disruptive and distressing illness for patients and their families. With the current trend of community care for mental illness, there is evidence that family intervention reduces patient relapse and re-hospitalization, satisfies the health needs of families and enhances their coping capabilities. Methods. A randomized controlled trial was conducted from May 2002 to June 2003 with 96 Chinese families of a relative with schizophrenia selected from two psychiatric outpatient clinics in Hong Kong. Families were randomly assigned to receive mutual support (n = 32), psycho-education (n = 33) or standard care only (n = 31). The interventions were delivered at outpatient clinics over a 6-month period. Pre- and post- (1 week and 6 months) testing took place and families' functioning, mental health service utilization, patients' level of functioning and duration of re-hospitalization were measured. Results. At both post-test periods, family caregivers and patients in the mutual support group reported statistically significant improvements on family and patients' level of functioning, when compared with their counterparts in the psycho-education and standard care groups. Conclusions. The findings support the use of mutual support groups as an effective modality of family intervention in a Chinese population caring for a family member with schizophrenia to improve both family and patient functioning.