3 resultados para Time-trends
em University of Queensland eSpace - Australia
Resumo:
This study explores whether the introduction of selectively trained radiographers reporting Accident and Emergency (A&E) X-ray examinations or the appendicular skeleton affected the availability of reports for A&E and General Practitioner (GP) examinations at it typical district general hospital. This was achieved by analysing monthly data on A&E and GP examinations for 1993 1997 using structural time-series models. Parameters to capture stochastic seasonal effects and stochastic time trends were included ill the models. The main outcome measures were changes in the number, proportion and timeliness of A&E and GP examinations reported. Radiographer reporting X-ray examinations requested by A&E was associated with it 12% (p = 0.050) increase in the number of A&E examinations reported and it 37% (p
Resumo:
This study investigates whether different diurnal types (morning versus evening) differ in their estimation of time duration at different times of the day. Given that the performance of morning and evening types is typically best at their preferred times of day, and assuming different diurnal trends in subjective alertness (arousal?) for morning and evening types, and adopting the attentional gate model of time duration estimation, it was predicted that morning types would tend to underestimate and be more accurate in the morning compared to evening types where the opposite pattern was expected. Nineteen morning types, 18 evening types and 18 intermediate types were drawn from a large sample (N=1175) of undergraduates administered the Early/Late Preference Scale. Groups performed a time duration estimation task using the production method for estimating 20-s unfilled intervals at two times of day: 0800/1830. The median absolute error, median directional error and frequency of under- and overestimation were analysed using repeated-measures ANOVA. While all differences were statistically non-significant, the following trends were observed: morning types performed better than evening types; participants overestimated in the morning and underestimated in the evening; and participants were more accurate later in the day. It was concluded that the trends are inconsistent with a relationship between subjective alertness and time duration estimation but consistent with a possible relationship between time duration estimation and diurnal body temperature fluctuations. (C) 2002 Elsevier Ltd. All rights reserved.
Resumo:
We present two methods of estimating the trend, seasonality and noise in time series of coronary heart disease events. In contrast to previous work we use a non-linear trend, allow multiple seasonal components, and carefully examine the residuals from the fitted model. We show the importance of estimating these three aspects of the observed data to aid insight of the underlying process, although our major focus is on the seasonal components. For one method we allow the seasonal effects to vary over time and show how this helps the understanding of the association between coronary heart disease and varying temperature patterns. Copyright (C) 2004 John Wiley Sons, Ltd.