6 resultados para Time-series Analysis
em University of Queensland eSpace - Australia
Resumo:
After ingestion of a standardized dose of ethanol, alcohol concentrations were assessed, over 3.5 hours from blood (six readings) and breath (10 readings) in a sample of 412 MZ and DZ twins who took part in an Alcohol Challenge Twin Study (ACTS). Nearly all participants were subsequently genotyped on two polymorphic SNPs in the ADH1B and ADH1C loci known to affect in vitro ADH activity. In the DZ pairs, 14 microsatellite markers covering a 20.5 cM region on chromosome 4 that includes the ADH gene family were assessed, Variation in the timed series of autocorrelated blood and breath alcohol readings was studied using a bivariate simplex design. The contribution of a quantitative trait locus (QTL) or QTL's linked to the ADH region was estimated via a mixture of likelihoods weighted by identity-by-descent probabilities. The effects of allelic substitution at the ADH1B and ADH1C loci were estimated in the means part of the model simultaneously with the effects sex and age. There was a major contribution to variance in alcohol metabolism due to a QTL which accounted for about 64% of the additive genetic covariation common to both blood and breath alcohol readings at the first time point. No effects of the ADH1B*47His or ADH1C*349Ile alleles on in vivo metabolism were observed, although these have been shown to have major effects in vitro. This implies that there is a major determinant of variation for in vivo alcohol metabolism in the ADH region that is not accounted for by these polymorphisms. Earlier analyses of these data suggested that alcohol metabolism is related to drinking behavior and imply that this QTL may be protective against alcohol dependence.
Resumo:
This study explores whether the introduction of selectively trained radiographers reporting Accident and Emergency (A&E) X-ray examinations or the appendicular skeleton affected the availability of reports for A&E and General Practitioner (GP) examinations at it typical district general hospital. This was achieved by analysing monthly data on A&E and GP examinations for 1993 1997 using structural time-series models. Parameters to capture stochastic seasonal effects and stochastic time trends were included ill the models. The main outcome measures were changes in the number, proportion and timeliness of A&E and GP examinations reported. Radiographer reporting X-ray examinations requested by A&E was associated with it 12% (p = 0.050) increase in the number of A&E examinations reported and it 37% (p
Resumo:
In this paper we develop an evolutionary kernel-based time update algorithm to recursively estimate subset discrete lag models (including fullorder models) with a forgetting factor and a constant term, using the exactwindowed case. The algorithm applies to causality detection when the true relationship occurs with a continuous or a random delay. We then demonstrate the use of the proposed evolutionary algorithm to study the monthly mutual fund data, which come from the 'CRSP Survivor-bias free US Mutual Fund Database'. The results show that the NAV is an influential player on the international stage of global bond and stock markets.
Resumo:
We demonstrate that the process of generating smooth transitions Call be viewed as a natural result of the filtering operations implied in the generation of discrete-time series observations from the sampling of data from an underlying continuous time process that has undergone a process of structural change. In order to focus discussion, we utilize the problem of estimating the location of abrupt shifts in some simple time series models. This approach will permit its to address salient issues relating to distortions induced by the inherent aggregation associated with discrete-time sampling of continuous time processes experiencing structural change, We also address the issue of how time irreversible structures may be generated within the smooth transition processes. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: Intervention time series analysis (ITSA) is an important method for analysing the effect of sudden events on time series data. ITSA methods are quasi-experimental in nature and the validity of modelling with these methods depends upon assumptions about the timing of the intervention and the response of the process to it. METHOD: This paper describes how to apply ITSA to analyse the impact of unplanned events on time series when the timing of the event is not accurately known, and so the problems of ITSA methods are magnified by uncertainty in the point of onset of the unplanned intervention. RESULTS: The methods are illustrated using the example of the Australian Heroin Shortage of 2001, which provided an opportunity to study the health and social consequences of an abrupt change in heroin availability in an environment of widespread harm reduction measures. CONCLUSION: Application of these methods enables valuable insights about the consequences of unplanned and poorly identified interventions while minimising the risk of spurious results.