10 resultados para Time Scale
em University of Queensland eSpace - Australia
Resumo:
This work formulates existence theorems for solutions to two-point boundary value problems on time scales. The methods used include maximum principles, a priori bounds and topological degree theory.
Resumo:
Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.
Resumo:
This paper reports U-series dates on speleothem samples from Locality 15 at Zhoukoudian, one of the richest Paleolithic sites in northern China. The age of the lower part of Layer 2 is securely bracketed between 155,000 and 284,000 yr. The underlying Layer 3 dates back at least 284,000 yr. Layer 4, further below, should be older still, possibly by a cycle on the SPECMAP time scale before 284,000 yr ago. These ages, much greater than the previous estimates of 110,000-140,000 yr from U-series and electron spin resonance dating of fossil teeth, suggest that Locality 15 was broadly contemporaneous with Locality 4 (New Cave) and with the uppermost strata of Locality 1 (Peking Man site). The physical evolution and cultural development evidenced by the timing of the Zhoukoudian localities are in line with the opinion of Chinese anthropologists for a regional transition from Homo erectus to archaic Homo sapiens. (C) 2004 University of Washington. All rights reserved.
Resumo:
Hermatypic-zooxanthellate corals track the diel patterns of the main environmental parameters temperature, UV and visible light - by acclimation processes that include biochemical responses. The diel course of solar radiation is followed by photosynthesis rates and thereby elicits simultaneous changes in tissue oxygen tension due to the shift in photosynthesis/respiration balance. The recurrent patterns of sunlight are reflected in fluorescence yields, photosynthetic pigment content and activity of the two protective enzymes superoxide dismutase (SOD) and catalase (CAT), enzymes that are among the universal defenses against free radical damage in living tissue. All of these were investigated in three scleractinian corals: Favia favus, Plerogyra sinuosa and Goniopora lobata. The activity of SOD and CAT in the animal host followed the course of solar radiation, increased with the rates of photosynthetic oxygen production and was correlated with a decrease in the maximum quantum yield of photochemistry in Photosystem H (PSII) (Delta F'/F-m'). SOD and CAT activity in the symbiotic algae also exhibited a light intensity correlated pattern, albeit a less pronounced one. The observed rise of the free-radical-scavenger enzymes, with a time scale of minutes to several hours, is an important protective mechanism for the existence and remarkable success of the unique cnidarian-dinoflagellate associations, in which photosynthetic oxygen production takes place within animal cells. This represents a facet of the precarious act of balancing the photosynthetic production of oxygen by the algal symbionts with their destructive action on all living cells, especially those of the animal host.
Resumo:
Molecular dynamics simulations have been used to study the phase behavior of a dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA)/water 1:2:20 mixture in atomic detail. Starting from a random solution of DPPC and PA in water, the system adopts either a gel phase at temperatures below similar to 330 K or an inverted hexagonal phase above similar to 330 K in good agreement with experiment. It has also been possible to observe the direct transformation from a gel to an inverted hexagonal phase at elevated temperature (similar to 390 K). During this transformation, a metastable fluid lamellar intermediate is observed. Interlamellar connections or stalks form spontaneously on a nanosecond time scale and subsequently elongate, leading to the formation of an inverted hexagonal phase. This work opens the possibility of studying in detail how the formation of nonlamellar phases is affected by lipid composition and (fusion) peptides and, thus, is an important step toward understanding related biological processes, such as membrane fusion.
Resumo:
This paper presents a set of hypotheses to explain the cultural differences between Aboriginal people of the North and South Wellesley Islands, Gulf of Carpentaria and to characterise the relative degree and nature of their isolation and cultural change over a 10,000-year time-scale. This opportunity to study parallelisms and divergences in the cultural and demographic histories of fisher-hunter-gatherers arises from the comparison of three distinct cultural groupings: (a) the Ganggalida of the mainland, (b) the Lardil and Yangkaal of the North Wellesley Islands, and (c) the Kaiadilt of the South Wellesley Islands. Despite occupying similar island environments and despite their languages being as closely related as for example, the West Germanic languages, there are some major differences in cultural, economic and social organization as well as striking genetic differences between the North and South Wellesley populations. This paper synthesizes data from linguistics, anthropology, archaeology, genetics and environmental science to present hypotheses of how these intriguing differences were generated, and what we might learn about early processes of marine colonization and cultural change from the Wellesley situation.
Resumo:
Ar-40/Ar-39 incremental heating ages for twenty one grains of cryptomelane, collected at 0, 42, 45, and 60 in depths in the Cachoeira Mine weathering profile, Minas Gerais, permit calculating long-term (10 Ma time scale) weathering rate (saprolitization rate) in SE Brazil. Pure well-crystallized cryptomelane grains with high K contents (3-5 wt.%) yield reliable geochronological results. The Ar-40/Ar-39 plateau ages obtained decrease from the top to the bottom of the profile (12.7 +/- 0.1 to 7.6 +/- 0.1 Ma at surface; 7.6 +/- 0.2 to 6.1 +/- 0.2 Ma at 42 m; and 7.1 +/- 0.2 to 5.9 +/- 0.1 Ma at 45 in; 6.6 +/- 0.1 to 5.2 +/- 0.1 Ma at 60 in), yielding a weathering front propagation rate of 8.9 +/- 1.1 m/m.y. From the geochronological results and the mineral transformations implicit by the current mineralogy in the weathering profiles, it is possible to calculate the saprolitization rate for the Cachoeira Mine lithologies and for adjacent weathering profiles developed on granodiorites and scbists. The measured weathering front propagation rate yields a saprolitization rate of 24.9 +/- 3.1 t/km(2)/yr. This average long-term (> 10 Ma) saprolitization rate is consistent with mass balance calculations results for present saprolitization rates in weathering watersheds. These results are also consistent with longterm saprolitization rates estimated by combining cosmogenic isotope denudation rates with mass balance calculations. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
bstract: During the Regional Forest Agreement (RFA) process in south-east Queensland, the conservation status of, and threats to, priority vascular plant taxa in the region was assessed. Characteristics of biology, demography and distribution were used to assess the species' intrinsic risk of extinction. In contrast, the threats to the taxa (their extrinsic risk of extinction) were assessed using a decision-support protocol for setting conservation targets for taxa lacking population viability analyses and habitat modelling data. Disturbance processes known or suspected to be adversely affecting the taxa were evaluated for their intensity, extent and time-scale. Expert opinion was used to provide much of the data and to assess the recommended protection areas. Five categories of intrinsic risk of extinction were recognised for the 105 priority taxa: critically endangered (43 taxa); endangered (29); vulnerable (21); rare (10); and presumed extinct (2). Only 6 of the 103 extant taxa were found to be adequately reserved and the majority were considered inadequately protected to survive the current regimes of threatening processes affecting them. Data were insufficient to calculate a protection target for one extant taxon. Over half of the taxa require all populations to be conserved as well as active management to alleviate threatening processes. The most common threats to particular taxa were competition from weeds or native species, inappropriate fire regimes, agricultural clearing, forestry, grazing by native or feral species, drought, urban development, illegal collection of plants, and altered hydrology. Apart from drought and competition from native species, these disturbances are largely influenced or initiated by human actions. Therefore, as well as increased protection of most of the taxa, active management interventions are necessary to reduce the effects of threatening processes and to enable the persistence of the taxa.
Resumo:
The current success of soy foods is driving soy ingredient manufacturers to develop innovative products for food manufacturers. One such innovation is separating the soy proteins glycinin and beta-conglycinin to take advantage of their individual functional and nutritional properties. Precipitation by acidification is a low-cost method for separating these two proteins. Separation is achieved by preferentially precipitating glycinin at pH ~ 6 while beta-conglycinin remains in solution. Understanding the particle formation during protein precipitation is important as it can influence the efficiency of the precipitation process as well as subsequent downstream processes such as the particle-liquid separation step, usually achieved by centrifugation. Most of the previous soy protein precipitation studies are limited to precipitation at pH 4 as this is the pH range most commonly used in the commercial manufacturing of soy protein isolates. To date, there have been no studies on the particle formation during precipitation at pH > 5.Precipitation of soy protein is generally thought to occur by the rapid formation of primary particles in the size range of 0.1 - 0.3 microns followed by aggregation of these particles via collision to aggregates of size about 1 - 50 microns. The formation of the primary particles occurs on a time scale much shorter than that of the overall precipitation process (Nelson and Glatz, 1985). This study shows that precipitation of soy protein is indeed rapid. At high pH levels, binary liquid-liquid separation occurs forming a protein-rich heavy phase. The protein-rich phase appears as droplets which can be coalesced to form a uniform bulk layer under centrifugation forces. Upon lowering the pH level by the addition of acid, further protein is precipitated as amorphous material which binds the droplets together to form aggregates of amorphous precipitates. Liquid-liquid separation has been observed in many protein solutions but this phenomenon has only scarcely been reported in the literature for soy proteins. It presents an exciting opportunity for an innovative product. Features of the liquid-phase protein such as protein yield and purity will be characterized.