49 resultados para Tiger beetles.
em University of Queensland eSpace - Australia
Resumo:
Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae, The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented, A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria, Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group, Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species, A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology.
Resumo:
OBJECTIVES: 1. To critically evaluate a variety of mathematical methods of calculating effective population size (Ne) by conducting comprehensive computer simulations and by analysis of empirical data collected from the Moreton Bay population of tiger prawns. 2. To lay the groundwork for the application of the technology in the NPF. 3. To produce software for the calculation of Ne, and to make it widely available.
Resumo:
Allenic hydrocarbons, previously unknown as a molecular class from insects, are represented by CH3(CH2)(n)-CH=. =CH-(CH2)(7)CH3 (n = 11-15, 17, 19) in several Australian melolonthine scarab beetles and with demonstrated (R)-chirality when n = 11 and 13.
Resumo:
A suite of allenic hydrocarbons, previously unknown as a molecular class from insects, has been characterized from several Australian melolonthine scarab beetles. The allenes are represented by the formula CH3(CH2)nCH=.=CH(CH2)(7)CH3 with n being 11-15, 17 and 19, and thus, all have Delta(9,10)-unsaturation. These structures have been confirmed by syntheses and comparisons of spectral and chromatographic properties with those of the natural components. The enantiomers of (+/-)-Delta(9,10)-tricosadiene and Delta(9,10)-pentacosadiene were separable on a modified beta-cyclodextrin column (gas chromatography), and the natural Delta(9,10)-tricosadiene (n = 11) and Delta(9,10)-pentacosadiene (n = 13) were shown to be of >85% ee. Syntheses of nonracemic allenes of known predominating chirality were acquired using both organotin chemistry and sulfonylhydrazine intermediates, and comparisons then demonstrated that the natural allenes were predominantly (R)-configured.
Resumo:
1. Tiger snake antivenom, raised against Notechis scutatus venom, is indicated not only for the treatment of envenomation by this snake, but also that of the copperhead (Austrelaps superbus ) and Stephen's banded snake (Hoplocephalus stephensi ). The present study compared the neuromuscular pharmacology of venom from these snakes and the in vitro efficacy of tiger snake antivenom. 2. In chick biventer cervicis muscle and mouse phrenic nerve diaphragm preparations, all venoms (3-10 mug/mL) produced inhibition of indirect twitches. In the biventer muscle, venoms (10 mug/mL) inhibited responses to acetylcholine (1 mmol/L) and carbachol (20 mumol/L), but not KCl (40 mmol/L). The prior (10 min) administration of 1 unit/mL antivenom markedly attenuated the neurotoxic effects of A. superbus and N. scutatus venoms (10 mug/mL), but was less effective against H. stephensi venom (10 mug/mL); 5 units/mL antivenom attenuated the neurotoxic activity of all venoms. 3. Administration of 5 units/mL antivenom at t(90) partially reversed, over a period of 3 h, the inhibition of twitches produced by N. scutatus (10 mug/mL; 41% recovery), A. superbus (10 mug/mL; 25% recovery) and H. stephensi (10 mug/mL; 50% recovery) venoms. All venoms (10-100 mug/mL) also displayed signs of in vitro myotoxicity. 4. The results of the present study indicate that all three venoms contain neurotoxic activity that is effectively attenuated by tiger snake antivenom.
Resumo:
Aims: To quantify Listeria levels on the shell and flesh of artificially contaminated cooked prawns after peeling, and determine the efficacy of Listeria innocua as a model for L. monocytogenes in this system. Methods and Results: A L. monocytogenes and L. innocua strain were inoculated separately onto cooked black tiger prawns using two protocols ( immersion or swabbing with incubation). Prawns were peeled by two methods ( gloved hand or scalpel and forceps) and numbers of Listeria on shells, flesh and whole prawn controls were determined. Prawns were exposed to crystal violet dye to assess the penetration of liquids. Regardless of preparation method or bacterial strain there were ca 1log(10) CFU more Listeria per shell than per peeled prawn. Dye was able to penetrate to the flesh in all cases. Conclusions: Shell-on prawns may be only slightly safer than shell-off prawns. Listeria innocua is an acceptable model for L. monocytogenes in this system. Significance and Impact of the Study: Reduced risk from L. monocytogenes on prawns can only be assured by adequate hygiene or heating.
Resumo:
In August 2002, we performed MRI scans on a female juvenile Bengal tiger. We present the clinical course, imaging and autopsy findings, and some comparative anatomy of the tiger brain and skull. Magnetic resonance images of a tiger have not previously been published.