6 resultados para Tidal power industry
em University of Queensland eSpace - Australia
Resumo:
Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.
Resumo:
The deregulation of power industry worldwide has delivered the efficiency gains to the society; meanwhile, the intensity of competition has increased uncertainty and risks to market participants. Consequently, market participants are keen to hedge the market risks and maintain a competitive edge in the market; and this is a good explanation to the flourish of electricity derivative market. In this paper, the authors gave a comprehensive review of derivative contract pricing methods and proposed a new framework for energy derivative pricing to suit the needs of a deregulated electricity market
Resumo:
This study has three main objectives. First, it develops a generalization of the commonly used EKS method to multilateral price comparisons. It is shown that the EKS system can be generalized so that weights can be attached to each of the link comparisons used in the EKS computations. These weights can account for differing levels of reliability of the underlying binary comparisons. Second, various reliability measures and corresponding weighting schemes are presented and their merits discussed. Finally, these new methods are applied to an international data set of manufacturing prices from the ICOP project. Although theoretically superior, it appears that the empirical impact of the weighted EKS method is generally small compared to the unweighted EKS. It is also found that this impact is larger when it is applied at lower levels of aggregation. Finally, the importance of using sector specific PPPs in assessing relative levels of manufacturing productivity is indicated.
Resumo:
In this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.
Resumo:
This paper focuses on measuring the extent to which market power has been exercised in a recently deregulated electricity generation sector. Our study emphasises the need to consider the concept of market power in a long-run dynamic context. A market power index is constructed focusing on differences between actual market returns and long-run competitive returns, estimated using a programming model devised by the authors. The market power implications of hedge contracts are briefly considered. The state of Queensland Australia is used as a context for the analysis. The results suggest that generators have exercised significant market power since deregulation.