20 resultados para TiO2 cathodic electrosynthesis

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of TiO2 samples with different anatase-to-rutile ratios was prepared by calcination, and the roles of the two crystallite phases of titanium(IV) oxide (TiO2) on the photocatalytic activity in oxidation of phenol in aqueous solution were studied. High dispersion of nanometer-sized anatase in the silica matrix and the possible bonding of Si-O-Ti in SiO2/TiO2 interface were found to stabilize the crystallite transformation from anatase to rutile. The temperature for this transformation was 1200 degrees C for the silica-titania (ST) sample, much higher than 700 degrees C for Degussa P25, a benchmarking photocatalyst. It is shown that samples with higher anatase-to-rutile ratios have higher activities for phenol degradation. However, the activity did not totally disappear after a complete crystallite transformation for P25 samples, indicating some activity of the rutile phase. Furthermore, the activity for the ST samples after calcination decreased significantly, even though the amount of anatase did not change much. The activity of the same samples with different anatase-to-rutile ratios is more related to the amount of the surface-adsorbed water and hydroxyl groups and surface area. The formation of rutile by calcination would reduce the surface-adsorbed water and hydroxyl groups and surface area, leading to the decrease in activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve the recovery rate of TiO2 photocatalysts, which in most cases are in fine powder form, the chemical vapor deposition (CVD) method was used to load TiO2 onto a bigger particle support, silica gel. The amount of titania coating was found to depend strongly on the synthesis parameters of carrier gas flow rate and coating time. XPS and nitrogen ads/desorption results showed that most of the TiO2 particles generated from CVD were distributed on the external surface of the support and the coating was stable. The photocatalytic activities of TiO2/silica gel with different amounts of titania were evaluated for the oxidation of phenol aqueous solution and compared with that of Degussa P25. The optimum titania loading rate was found around 6 wt % of the TiO2 bulk concentration. Although the activity of the best TiO2/silica gel sample was still lower than that of P25, the synthesized TiO2/silica gel catalyst can be easily separated from the treated water and was found to maintain its TiO2 content and catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titania sol-pillared clay (TiO2 PILC) and silica-titania sol-pillared clay (SiO2-TiO2 PILC) were synthesized by the sol-gel method. Supercritical drying (SCD) and treatment with quaternary ammonium surfactants were used to tailor the pore structure of the resulting clay. It was found that SCD approach increased the external surface area of the PILCs dramatically and that treatment with surfactants could be used to tailor pore size because the mesopore formation in the galleries between the clay layers follows the templating mechanism as observed in the synthesis of MCM-41 materials. Highly mesoporous solids were thus obtained. In calcined TiO2 PILC, ultrafine crystallites in anatase phase, which are active for photocatalytic oxidation of organics, were observed. In SiO2-TiO2 PILCs and their derivatives, titanium was highly dispersed in the matrix of silica and no crystal phase was observed. The highly dispersed titanium sites are good catalytic centers for selective oxidation of organic compounds. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an electrochemical study of the anodic characteristics of arsenopyrite in strongly alkaline solutions and of the cathodic reduction of ferrate( VI) and of dissolved oxygen at an arsenopyrite surface at potentials which are relevant to the oxidation reactions. Cyclic voltammetry at both arsenopyrite disc and arsenopyrite disc/platinum ring electrodes has shown that arsenic(III) is the main product of the anodic process at potentials in the region of the rest potential during oxidation by either ferrate( VI) or oxygen. Evidence for partial passivation of both the anodic and cathodic reactions has been obtained from potentiostatic current - time transients. The initial stage of oxidation by ferrate( VI) has been shown to be mass-transport controlled and this is also true of the oxidation by oxygen in dilute solutions of sodium hydroxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports a study of the effects of synthesis parameters on the preparation and formation of mesoporous titania nanopowders by employing a two-step sol-gel method. These materials displayed crystalline domains characteristic of anatase. The first step of the process involved the hydrolysis of titanium isopropoxide in a basic aqueous solution mediated by neutral surfactant. The solid product obtained from step 1 was then treated in an acidified ethanol solution containing the same titanium precursor to thicken the pore walls. Low pH and higher loading of the Ti precursor in step 2 produced better mesoporosity and crystallinity of titanium dioxide polymorphs. The resultant powder exhibited a high surface area (73.8 m(2)/g) and large pore volume (0.17 cm(3)/g) with uniform mesopores. These materials are envisaged to be used as precursors for mesoporous titania films as a wide band gap semiconductor in dye-sensitized nanocrystalline TiO2 solar cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalytic activities and deactivation characteristics of oxides-supported nickel catalysts for the reaction of methane reforming with carbon dioxide were investigated. The dynamic carbon deposition on various nickel catalysts was also studied by a thermogravimetric method. Among the catalysts prepared, Ni/La2O3, Ni/alpha-Al2O3, Ni/SiO2, and Ni/CeO2 showed very high CH4 and CO2 conversions and moderate deactivation whereas Ni/MgO and Ni/TiO2 had lower conversions when the Ni reduction was conducted at 500 degrees C. When Ni/MgO catalyst was reduced at 800 degrees C, it exhibited not only comparable conversions of CH4 and CO2 with other active catalysts but also much longer period of stability without deactivation. The amount of carbon deposited in Ni-based catalysts varied depending on the nature of support and followed the order of Ni/La2O3 > Ni/alpha-Al2O3 > Ni/SiO2 > Ni/MgO > Ni/CeO2 at 700 degrees C. The carbons formed on the catalyst surface showed different structural and chemical properties, and these in turn affected the catalytic activity of the catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corrosion behaviour of AZ21, AZ501 and AZ91 was studied in 1 N NaCl at pH 11 by measuring electrochemical polarization curves, electrochemical AC impedance spectroscopy (EIS) and simultaneously measuring the hydrogen evolution rate and the: magnesium dissolution rate. The corrosion rates increased in the following order: AZ501 < AZ21 < AZ91. The: corrosion behaviour was related to alloy microstructure as revealed by optical and electron microscopy. The beta phase was very stable in the test solution and was an effective cathode. The beta phase served two roles, as a barrier and as a galvanic cathode. If the beta phase is present in the alpha matrix as intergranular precipitates with a small volume fraction, then the beta phase mainly serves as a galvanic cathode, and accelerates the corrosion of the alpha matrix. If the beta Fraction is high, then the beta phase may mainly act as an anodic barrier to inhibit the overall corrosion of the alloy. The composition and compositional distribution in the alpha phase is also crucial to the overall corrosion performance of dual phase alloys. Increasing the aluminum concentration in the alpha phase increases the anodic dissolution rate and also increases the cathodic hydrogen evolution rate. Increasing the zinc concentration in the alpha phase may have the opposite effect. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemistry of copper patination was investigated by two series of experiments. The chemistry of an aqueous copper-sulphate solution was studied at concentrations and pH values near those predicted in an electrolyte on copper exposed to the atmosphere. The electrochemical reactions in an electrolyte in contact with cuprite were investigated in a reaction vessel which used cuprite powder in artificial rainwater to study the electrochemistry of the atmospheric corrosion and patination of copper. Typical sulphate concentrations in rainwater are sufficient to precipitate posnjakite (Cu4SO4(OH)(6)2H(2)O)), a possible precursor to brochantite, within an hour of wetting a cuprite surface. Brochantite (Cu4SO4(OH)(6)), the most commonly found copper salt in natural patinas is responsible for their green appearance. Precipitation of brochantite from the electrolyte resulted from an increase in pH due to the cathodic reduction of oxygen and an increase in cupric ion concentrations by cuprite oxidation. (C) 1998 Elsevier Science Ltd. All rights reserved.